## Solutions to Quiz 1

1. For a positive integer $n$, with the usual rules for addition and multiplication in $\mathbb{Z} / n$, show that multiplication distributes over addition.

Solution: Given integers $a$ and $b$ we perform division by $n$

$$
a=c n+d \text { and } b=e n+f
$$

with $d$ and $f$ non-negative integers less than $n$.
If $(e+f)=g n+h$ is the division of $e+f$ by $n$, then

$$
a+b=(c+d) n+e+f=(c+d+g) n+h
$$

is the division of $a+b$ by $n$. Hence, whether we take remainder modulo $n$ before addition or after addition, the result is the same.

Similarly, if ef $=k n+m$ is the division of ef by $n$, then

$$
a b=(c e n+c f+e d) n+e f=(c e n+c f+e d+k) n+m
$$

is the division of $a b$ by $n$. Hence, whether we take the remainder modulo $n$ before multiplication of after multiplication, the result is the same.
In other words, taking remainder modulo $n$ before or after an arithmetic opration has the same result.
Now multiplication distributes over addition in integers. So if we look at $a, b$ and $c$ in the subset $\{0,1, \ldots,(n-1)\}$ of integers, we will get

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

where the operations are the usual operations in integers. By the above calculations, we can now take remainders after division modulo $n$

$$
(a \cdot((b+c) \% n)) \% n=((a \cdot b) \% n+(a \cdot c) \% n) \% n
$$

since taking remainder before or after arithmetic operations gives the same answer.
2. Give an example to show that addition in $\mathbb{Z}$ does not distribute over multiplication.

Solution: We need to find integers $a, b$ and $c$ so that

$$
a+(b \cdot c) \neq(a+b) \cdot(a+c)
$$

Any positive $a, b, c$ will do. For example $a=1, b=1, c=1$

$$
1+(1 \cdot 1)=2 \neq 4=(1+1) \cdot(1+1)
$$

