
Integers, Polynomials, Matrices
MTH302 Assignment 2 11 August, 2016

Solutions to Assignment 2

1. Show that the formula for multiplication of matrices over a ring R follows the distributive
and associative laws in R.

Solution: The rule for addition is “entry-wise”: if A+B = C then Ci,j = Ai,j +Bi,j.
Since addition in R is commutative and associative, so is the addition of matrices.

If A · B = D then we have Di,j =
∑

k Ai,k · Bk,j. Now, if D · C = M then Mi,j =∑
kDi,k · Ck,j. Let us put B · C = E. We see that

Mi,j =
∑
k

(∑
n

Ai,n ·Bn,k

)
· Ck,j

=
∑
k

∑
n

(Ai,n ·Bn,k) · Ck,j

=
∑
k

∑
n

Ai,n · (Bn,k · Ck,j)

=
∑
n

∑
k

Ai,n · (Bn,k · Ck,j)

=
∑
n

Ai,n ·

(∑
k

Bn,k · Ck,j

)

Now Ei,j =
∑

k Bi,k ·Ck,j, so we see that the right-hand side is
∑

nAi,n ·En,j, which is
the (i, j)-th entry of A ·E. This checks the associativity for multiplication. Note that
we have used associativity for multiplication in R in the third step of the calculation
above.

A similar calculation can be used to check the distributive law for matrices by using
the distributive law in R.

2. Using the associative law show that if x2 = r and y2 = s and x · y = −(y · x), then
x · y)2 = −r · s.
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Solution: We check

(x · y)2 = (x · y) · (x · y) = x · (y · (x · y)) = x · ((y · x) · y)

= x · (−(x · y) · y) =

= x · (((−1) · (x · y)) · y) =

= x · ((−1) · ((x · y) · y)) =

= (x · (−1)) · (x · (y · y)) =

= (−1) · x) · (x · (y · y)) =

= (−1) · (x · (x · (y · y)) =

= (−1) · ((x · x) · (y · y)) =

= (−1) · x2 · y2 = −r · s

We have skipped some steps in the interests of brevity! Secondly, we have used
−x = (−1) · x = x · (−1), which is true for any ring R (Check!).

3. Consider the ring H consisting of pairs (a, ~u) where a is a real number and ~u is a vector
in 3-dimensional space. Addition is carried out component-wise and multiplication is
given by:

(a, ~u) · (b, ~v) = (ab− ~u · ~v, a~v + b~u+ ~u× ~v)

(Warning: There was an error in the exercise as stated in the assignment!) where ~v · ~w
is the usual dot-product and ~v × ~w is the usual cross-product.

Check that H is a ring under these operations.

Solution: First of all addition is component-wise so it is associative and commuta-
tive. Secondly, we know that the following distributive laws hold:

1. a(~v + ~w) = a~v + a~w.

2. (a+ b)~v = a~v + b~v

3. ~v · (~w + ~u) = ~v · ~w + ~v · ~u and also on the right-hand side.

4. ~v × (~w + ~u) = ~v × ~w + ~v × ~u and also on the right-hand side.

Using these, one can easily (but tediously!) check the distributive law for multipli-
cation from left and right.

Checking the associative law for multiplication is the main task.

((a, ~u) · (b, ~v)) · (c, ~w) = (ab− ~u · ~v, a~v + b~u+ ~u× ~v) · (c, ~w)

(abc− c~u · ~v − (a~v + b~u+ ~u× ~v) · ~w,
ab~w + c(a~v + b~u+ ~u× ~v) + (a~v + b~u+ ~u× ~v)× ~w)
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The first element of the tuple on the right-hand side simplifies to

abc− c~u · ~v − a~v · ~w − b~u · ~w − (~u× ~v) · ~w

We need to note that the dot-product of vectors is commutative and the identity

(~u× ~v) · ~w = ~u · (~v)× ~w)

This follows from the fact that both of these give the (signed) volume of the paral-
lelopiped with “sides” given by these three vectors. This can be used to show that
the first component of the product is associative.

The second component of the product is

ab~w + c(a~v + b~u+ ~u× ~v) + (a~v + b~u+ ~u× ~v)× ~w =

ab~w + bc~u+ ac~v+

c~u× ~v + b~u× ~w + a~v × ~w+

~u× ~v × ~w

Now all the above products are associative so we will get the same answer from the
right-hand side of the identity. (Check!)

4. Check that the two ways of constructing H via matrices and as given above result in the
same ring via a natural correspondence.

Solution: Both rings contain the ring of real numbers as a subring; in the case of
matrices, these are the scalar 4× 4 matrices and in the above case they are elements
of the form (a,~0). In both descriptions every quaternion in can be written in a unique
way as a + b · î + c · ĵ + d · k̂. Addition is component-wise and is the same in both
cases. The main question is to check that multiplication is the same.

The key point is, the elements of the subring of real numbers commute with every
quaternion (Check!). Thus, it is enough to check the rules for multiplication between
î, ĵ and k̂. These are given by

î2 = ĵ2 = k̂2 = −1 = îĵk̂

in both cases.

5. (Starred) We take the set S to consist of n-tuples of elements of R and define the
operations on S via the rules:

• addition is defined component-wise.
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• for the tuples ei = (0, . . . , 1, . . . , 0) (where 1 is in the i-th place) we define mutlipli-
cations ei · ej as linear combinations (using elements ci,j,k in R):

Check that the associative law for multiplication requires some identities to hold in R
for the elements ci,j,k.

Solution: The associative law will follow if we check

(ei · ej) · ek = ej · (ej · ek)

In terms of the above description, the left-hand side becomes∑
p

ci,j,pep · ek =
∑
p

∑
q

ci,j,pcp,k,qeq

Similarly, the right-hand side becomes∑
p

cj,k,pei · ep =
∑
p

∑
q

ci,p,qcj,k,peq

Here we have assumed that elements of R commute all elements of S. Matching
entries, we have ∑

p

ci,p,qcj,k,p =
∑
p

ci,j,pcp,k,q

6. (Starred) Why do we define matrix multiplication the way we do?

Solution: First of all, it has all the right properties: associativity, distributivity and
identity.

Secondly, we can show that any other way of defining mutliplication for tuples of
elements of R (such as the previous exercise) is the same as defining a suitable subring
of matrices. (In fact, for each p the collection cp,i,j can be seen as the (i, j)-th entry
of a matrix and the ring we get is the subring generated by these matrices.)

7. Given a commutative ring R and an element r of R show that matrices of the form:(
a b · r
b a

)
are closed under addition and mutliplication; here a and b denote elements of R.
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Solution: The sum is given by(
a b · r
b a

)
+

(
c d · r
d c

)
=

(
a+ c (b+ d) · r
b+ d a+ c

)
The product is given by(

a b · r
b a

)
·
(
c d · r
d c

)
=

(
a · c+ b · d · r (a · d+ b · c) · r
(b · c+ a · d) (b · d · r + a · c)

)

8. Show that the the ring of complex numbers is the same as the collection of matrices of

the form

(
a −b
b a

)
where a and b are real numbers.

Solution: The complex number a+ bι is identified with the above matrix. We then
check that the sum and product are exactly as they should be.

9. Check that 2 × 2 matrices of the type

(
u −v
v u

)
with u and v in the field of complex

numbers is closed under addition and multiplication.

Solution: Since addition is component-wise, and the conjugate of a sum of complex
numbers is the sum of their conjugates, the result for addition is easy.

For multiplication, we have(
u −v
v u

)
·
(
x −y
y x

)
=

(
ux− vy −uy − vx
vx+ uy −vy + ux

)
This is a matrix of the same type with entries corresponding to ux−vy and vx+uy.

10. Check that

0 1 0
0 0 1
0 0 0

 is a nilpotent matrix.

Solution: If N is the matrix as above, then we have

N2 =

0 0 1
0 0 0
0 0 0


It follows by multiplication the N3 = 0.
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11. What are the nilpotent elements in the ring Z/24?

Solution: To get a nilpotent element we need an integer k some that some power
kn is divisible by 24. Thus, kn is divisible is divisible by 2 and 3. It follows that
k is divisible by 2 and 3; so k is of the form 6m for some integer m. In that case
(6m)3 = 24(9m3) is divisible by 24. In Z/24 the distinct elements are 6, 12 and 18.

12. Check that a strictly upper triangular matrix is nilpotent.

Solution: If N is a p × p matrix, then its entries are determined by the result of
multiplication N · ei for i = 1, . . . , p where ei is the column vector containing 1 in
the i-th place and 0 elsehwere.

Now, if N is strictly upper triangular, we see that N · ei is a combination of ej for
j ≥ i + 1. Applying this iteratively, we see that Nk · ej is a combination of ej for
j ≥ i + k. Since the there are no ej for j greater than p, we see that Np is the 0
matrix.

13. (Starred) Give an example of a matrix which is *not* upper or lower triangular and yet
is nilpotent.

Solution: All we need is a p× p matrix that sends vi to vi+1 or 0 if i = p. where vi
is a bases of the p dimensional vector space. For example,(

1 −1
1 −1

)

14. Check that

1 0 0
0 0 0
0 0 1

 is an idempotent matrix.

Solution: An easy exercise in matrix multiplication!

15. Are there any idempotent elements in Z/6 other than 1 and 0?
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Solution: We need integers n so that 6 divides n2 − n; this means 2 and 2 divide
n2 − n = n(n − 1). Now if 2 divides n then 2 does not divide n − 1. Now if 3 also
divides n, then 6 divides n, so n = 0 in Z/6. Thus we need 3 to divide n− 1. This
happens for n = 4. Similarly, interchanging the role of n and n−1 we see that n = 3
is another answer.

16. If p is an idempotent element, then check that 1− p is also an idempotent element.

Solution: We have (1− p)2 = 1− p− p+ p2 = 1− p since −p+ p2 = 0.

17. If p is an idempotent element of a ring R, then check that the set pRp = {pap|a ∈ R}
is closed under addition and multiplication and that p acts as multiplicative identity on
pRp.

Solution: We check that pap + pbp = p(a + b)p by the distributive law in R. We
also check that (pap)(pbp) = p(ap2b)p is also in pRp. (Note that this did not need
that p is idempotent. To check that p acts as identity, we have p(pap) = p2ap = pap
where we have used p2 = p.

18. Check that

1 0 0
0 0 0
0 0 1

 is a zero divisor.

Solution: The product of the above matrix with the matrix

0 0 0
0 1 0
0 0 0

 is the 0

matrix.

19. What are the zero divisors in the ring Z/42?

Solution: We need to find integers a and b so that ab is divisible by 42 but a is not.
Since 42 = 2 ·3 ·7. We can take a to be of the form 2m or 3m or 7m for some integer
m.

20. Give an example of a 2× 2 matrix which is not nilpotent and not idempotent and yet is
a zero divisor.

MTH302 Assignment 2 Page 7 of 12



Solution: The matrices

A =

(
2 1
0 0

)
and B =

(
1 0
−2 0

)
Have the property that A ·B is 0. However,

Ak =

(
2k 2k−1

0 0

)
is different from A and different from 0.

21. Find a condition under which an element k of Z/n is a zero divisor.

Solution: The conditions is that there is an integer m so that km is divisible by n
but m is not divisible by n. In other words, k should have a common factor with n.

22. (Starred) Find the condition under which a 2× 2 matrix over rational numbers is a zero
divisor in this ring.

Solution: A p × p matrix A is a zero divisor if (and only if) there is a non-zero
vector v so that A · v = 0.

We can then take B to be the p×p matrix all of whose columns are v; we check that
A ·B = 0. Conversely, if there is a non-zero matrix B so that A ·B = 0, then we can
take v to be any non-zero column of v.

Note that, in the above situation, there is also a non-zero row vector so that w ·A = 0
(since row-rank equals column rank!). Hence there is also a matrix C so that C·A = 0.

23. Check that the matrix A =

(
0 1
1 1

)
is a unit in the ring of 2× 2 matrices.

Solution: The matrix B =

(
−1 1
1 0

)
has the property that A ·B and B ·A are the

identity matrix.

24. Check that 5 is a unit in the ring Z/42.
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Solution: We note that 5 · 17 = 85 = 1 (mod 42).

25. Check that the product of units is also a unit.

Solution: Suppose that u · v = 1 = v · u, and a · b = 1 = b · a. Then

(u · a) · (b · v) = 1 and (b · v) · (u · a) = 1

Hence u · a is also a unit.

26. Give a condition on an element k of Z/n so that it is a unit in this ring.

Solution: As seen earlier, if k and n have no common factor then there are integers
A and B so that kA + nB = 1. It follows that a = A%n is an element of Z/n so
that ka = 1 in this ring. Conversely, it there is such an element a then treating a as
an integer we have the identity ka− 1 = nb for a suitable integer b. So k and n have
no common factor.

27. (Starred) Give a condition on 2×2 matrices over integers so that it is a unit in this ring.

Solution: Given a matrix A with integer entries for which there is a matrix B with
integer entries such that A · B = 1. In that case det(A) det(B) = 1. Since both of
the latter are integers, it follows that det(A) = ±1. Conversely, suppose

A =

(
a b
c d

)
Then we take

C =

(
d −b
−c d

)
We get A·C as the diagonal matrix with entries ad−bc. Now if det(A) = ad−bc = ±1,
we put B = (ad− bc) · C; then A ·B is the identity matrix.

28. If u is a unit and is idempotent, then check that u = 1.
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Solution: We are given that there is a v so that u · v = 1 = v · u; moreover, we are
given u2 = u. So we get

u = u · 1 = u · (u · v) = u2 · v = u · v = 1

29. Can there be a unit which is also a zero divisor?

Solution: If u · v = 1 = v · u and u · w = 0, then

w = 1 · w = (v · u) · w = v · (u · w) = v · 0 = 0

So u is not a zero-divisor.

30. Is it possible for the sum of nilpotent elements to be a unit?

Solution: The matrices

A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
are nilpotent. On the other hand we check that (A+ B)2 = 1. Hence, it is possible
for the sum of nilpotent elements to be a unit.

31. Is it possible for the sum of units to be nilpotent?

Solution: If u is a unit, then so is −u. One the other hand u + (−u) = 0 which is
certainly nilpotent!

32. (Starred) Ask yourself other questions about other combinations of properties and come
up with their answers!

33. Note that the only idempotents in Z are 0 and 1.

Solution: For an idempotent element n we must have n2− n = 0. This means that
n · (n − 1) = 0. Now, in the ring of integers if a · b = 0 then either a is 0 or b is 0.
Hence, the only solutions are n = 0 or n = 1.
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34. Show that the map that sends an element a or R to the p× p matrix f(a) which has a
on the diagonal and 0 everywhere else gives a ring homomorphism f : R→Mp(R).

Solution: This is a simple exercise in matrix operations of addition and multiplica-
tion.

35. Check that A given by

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

−a0 −a1 −a2 . . .


satisfies the equation

Xn + an−1X
n−1 + · · ·+ a0 = 0

Solution: Let ei denote the row vector which has 1 in the i-th place and 0 everywhere
else. We note that the matrix A can also be described as follows ei · A = ei+1 for
i < n and

en · A = −a0e1 − a1e2 − · · · − an−1en

Note that e1 · An = (e1 · An−1) · A = en · A. Hence,

e1 · (An + an−1A
n−1 + . . . a0) = 0

Now, it follows that

ei · (An + an−1A
n−1 + . . . a0) =

(e1 · Ai−1) · (An + an−1A
n−1 + . . . a0) =

e1 · (An+i−1 + an−1A
n−1+i−1 + . . . a0A

i−1) =

(ei · (An + an−1A
n−1 + . . . a0)) · Ai−1 = 0

Thus, the matrix B = (An + an−1A
n−1 + . . . a0) satisfies ei ·B = 0 for all i. In other

words left-mutliplication of B by the identity matrix gives 0. So B is the 0 matrix.

36. Check that 2 · 2 + 1 = 0 in the ring Z/5.

Solution: Simple arithmetic.

MTH302 Assignment 2 Page 11 of 12



37. Check that 2 · 2 · 2− 1 = 0 in the ring Z/7.

Solution: Simple arithmetic.
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