Variables, Polynomials, Functions and Constants

1. Check that the only idempotents in \mathbb{Z} are 0 and 1 .
2. For what integers n can you find idempotents different from 0 and 1 in \mathbb{Z} / n ?
3. Given any ring R we have a natural ring homomorphism $f: \mathbb{Z} \rightarrow R$. For any element a in R and any integer n, check that $f(n) \cdot a=a \cdot f(n)$.
4. Given an element a in a ring R consider the two "new" elements $b=2+3 \cdot a$ and $c=a-5 \cdot a^{3}$. Check that $b \cdot c$ has the form $n_{0}+n_{1} \cdot a+n_{2} \cdot a^{2}+n_{3} \cdot a^{3}+n_{4} \cdot a^{4}$. How did you use the previous exercise in solving this one?
5. Write down the formulas for addition and multiplication of $p(T)=p_{0}+p_{1} T+\cdots+p_{k} T^{k}$ and $q(T)=q_{0}+q_{1} T+\cdots+q_{l} T^{l}$. Here k and l are non-negative integers and p_{i} 's and q_{j} 's are elements of a ring R.
6. (Starred) For a ring S and a fixed element s in S, define a map $D_{s}(a)=s \cdot a-a \cdot s$. This is not a ring homomorphism. However, check that $D_{s}(a+b)=D_{s}(a)+D_{s}(b)$ and (more importantly) $D_{s}(a \cdot b)=a \cdot D_{s}(b)+D_{s}(a) \cdot b$.
7. Suppose that R is commutative and that S is an R-algebra. Show that giving an element of S is the same as giving a homomorphism $R[T] \rightarrow S$ where the map is the natural one on R.
8. Suppose $a \cdot b \neq b \cdot a$ in R, then show that the map $R[T] \rightarrow R$ which sends T to a is *not* a homomorphism.
9. Check that point-wise addition and multiplication make $\operatorname{Map}(X, R)$ into a ring for any set X
10. For each element a in R we can consider the "constant" function \underline{a} which sends every element of X to a. Show that this gives a ring homomorphism $R \rightarrow \operatorname{Map}(X, R)$.
11. Check that evaluation gives a ring homomorphism $R[T] \rightarrow \operatorname{Map}(R, R)$ when R is commutative.
12. (Starred) Does the above statement hold if R is not commutative? Give an example to justify your answer.
13. How many elements are there in the set $\operatorname{Map}(\mathbb{Z} / n, \mathbb{Z} / n)$?
14. For $n=3,4,5,6$, find an explicit polynomial $p(T)$ in $(\mathbb{Z} / n)[T]$ for which $e_{p}(k)=0$ for *every* element k in \mathbb{Z} / n.
15. Find an explicit polynomial $p(T)$ in $(\mathbb{Z} / n)[T]$ for which $e_{p}(k)=0$ for *every* element k in \mathbb{Z} / n.
