Indian Institute of Science Education and Research Mohali

Differential Equations for Scientists (IDC205)¹

Academic Session 2016-17

Problem Sheet 02

Due on : August 16, 2016

- 1. Find a solution of the initial value problem $\frac{d}{dx}(y) = x^2 + y^2$; y(1) = 3. Can we use Picard's theorem to ascertain that the initial value problem $\frac{d}{dx}(y) = x^2 + y^2$; y(1) = 3 has a solution? Why?
- 2. Can we use Picard's theorem to ascertain that the initial value problem $\frac{d}{dx}(y) = \frac{y}{\sqrt{x}}$; y(0) = 1 has a solution? Why?
- 3. Use Taylor series to find a family of curves satisfying $\frac{d}{dx}(y) = x + y$. Do not forget to comment about the convergence of the series that you get.
- 4. If M(x, y) dx + M(x, y) dy is exact then a function F(x, y) satisfying $\frac{\partial}{\partial x}F(x, y) = M(x, y)$ and $\frac{\partial}{\partial y}F(x, y) = N(x, y)$ is called a *solution* of the differential form M(x, y) dx + M(x, y) dy.
 - (a) Solve the differential form $(3x^2 + 4xy) dx + (2x^2 + 2y) dy$.
 - (b) Solve the differential form $y\sin(2x) dx (y^2 + \cos^2(x)) dy$.
- 5. Consider the two differential forms associated to the differential equation $\frac{d}{dx}(y) = \frac{y}{x}$.
 - (a) $y \, dx x \, dy$, (b) $\frac{1}{y} \, dx - \frac{x}{y^2} \, dy$.

Show that (b) is exact, while (a) is not. Find a solution F(x, y) of (b). Observe that F(x, y) = c is a family of curves that satisfies the given differential equation.

6. Find orthogonal trajectories to the family of parabolas : $y = cx^2$. Can you identify what these orthogonal curves are?

¹An interdisciplinary core elective course taught by Amit Kulshrestha during the odd semester of academic session 2016-17 at IISER Mohali.