Differential Equations for Scientists (IDC205) ${ }^{1}$

Academic Session 2016-17

1. Find a solution of the initial value problem $\frac{d}{d x}(y)=x^{2}+y^{2} ; y(1)=3$. Can we use Picard's theorem to ascertain that the initial value problem $\frac{d}{d x}(y)=x^{2}+y^{2} ; y(1)=3$ has a solution? Why?
2. Can we use Picard's theorem to ascertain that the initial value problem $\frac{d}{d x}(y)=\frac{y}{\sqrt{x}} ; y(0)=$ 1 has a solution? Why?
3. Use Taylor series to find a family of curves satisfying $\frac{d}{d x}(y)=x+y$. Do not forget to comment about the convergence of the series that you get.
4. If $M(x, y) d x+M(x, y) d y$ is exact then a function $F(x, y)$ satisfying $\frac{\partial}{\partial x} F(x, y)=M(x, y)$ and $\frac{\partial}{\partial y} F(x, y)=N(x, y)$ is called a solution of the differential form $M(x, y) d x+M(x, y) d y$.
(a) Solve the differential form $\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y$.
(b) Solve the differential form $y \sin (2 x) d x-\left(y^{2}+\cos ^{2}(x)\right) d y$.
5. Consider the two differential forms associated to the differential equation $\frac{d}{d x}(y)=\frac{y}{x}$.
(a) $y d x-x d y$,
(b) $\frac{1}{y} d x-\frac{x}{y^{2}} d y$.

Show that (b) is exact, while (a) is not. Find a solution $F(x, y)$ of (b). Observe that $F(x, y)=c$ is a family of curves that satisfies the given differential equation.
6. Find orthogonal trajectories to the family of parabolas : $y=c x^{2}$. Can you identify what these orthogonal curves are?

[^0]
[^0]: ${ }^{1}$ An interdisciplinary core elective course taught by Amit Kulshrestha during the odd semester of academic session 2016-17 at IISER Mohali.

