
Rings, divisors and ideals

Rings

A ring is a set R with binary operations of addition (+) and multiplication (·)
satisfying the following properties:

• addition and multiplication are associative.

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c

• addition is commutative: a + b = b + a.

• multiplication distributes over addition.

a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a)

• we have an additive identity 0 and a multiplicative identity 1.

a + 0 = a = 0 + a and 1 · a = a = a · 1

• each element a has an additive inverse −a.

a + (−a) = 0 = (−a) + a

In other words, it is just like our usual number system (except that we do not
require multiplication to be commutative). Hence, we can and will use the usual
bracketing and grouping rules to write expressions involving elements of a ring.

Examples: Keep the following basic examples in mind at all times! We will
learn more complicated examples as the course progresses.

1. The ring Z of all integers with the usual operations.

2. The ring {0} which consists of just one element 0 with 0 + 0 = 0 and
0 · 0 = 0.

3. For each integer n, the ring Z/n which consists of the set of numbers
{0, 1, . . . , n − 1}. The addition operation is defined by usual integer ad-
dition followed by taking the remainder after division by n. Similarly,
multiplication is defined by usual integer multiplication followed by taking
the remainder after division by n. The usual 0 and 1 are the additive and
multiplicative identities. The additive inverse of an element a is given by
n− a.

1



4. The usual sets Q of rational numbers, R of real numbers, C of complex
numbers are also rings with the usual operations of addition and multipli-
cation.

Exercise: Check that the axioms of a ring are satisfied by Z/n. (Hint: One can
always take remainder “at the end.”)
Note that the example Z/n can be visualised like a clock with n hours. This is
why the name “ring” has been chosen for this concept in mathematics.
Exercise: In a ring, check that a.0 = 0 = 0.a for any element a of the ring.

Ideals

A fundamental property of integers that we have learned in school is “division.”
Given an integer a and a positive integer b, we can find unique integers q = a//b
and r = a%b so that (here the symbol after the equality is the computer operation
that can be used to calculate the value in Sage):

a = b · q + r and 0 ≤ r < b

In fact, this r is the remainder that we used in the definition of Z/nwith b
replaced by n.
We can also allow b to be negative (but not 0). In this case we replace the above
requirement for r with 0 ≤ r < |b|.
We say that a is “divisible” by b when r = 0 and we also write this as b|a or say
b divides a. We also say that b is a divisor of a when b is positive.
Since we can write a = 1 · a + 0, every number has 1 as a divisor. Given two
numbers a and b, we can look for the greatest common divisor (since 1 is clearly
a common divisor). One of the algorithms we learned in school is the “Division
algorithm” which allows us to calculate this. It goes as follows (given as a Python
program):

def gcd(a,b):
a, b = abs(a), abs(b)
if b > a:

a, b = b, a
while b != 0:

a, b = b, a%b
return a

Exercise: Check that this program actually calculates the greatest common
divisor of a and b. (Hint: We only need to check that the greatest common
divisor is invariant under the above substitutions.)
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Given three numbers a, b and c, we can calculate gcd(gcd(a, b), c).

Exercise: Check that this calculation does give the greatest common divisor of
a, b and c.

More generally, given a finite collection of integers a1, a2, . . . , ak, We can induc-
tively calculate the greatest common divisor by applying the above gcd function
pairwise repeatedly.

Even if we have an infinite collection of integers, we can see that the greatest
common divisor can be calculated this way since the value keeps decreasing and
is non-negative. Hence, it must stop after a finite stage.

In summary, given a set S ⊂ Z of integers, we can find the greatest non-negative
integer d for which every element of S is a multiple of S. (The only case when
d = 0 is when S = {0}!) This means that S ⊂ dZ and moreover, this is the
largest integer for which this is true.

Exercise: If the greatest common divisor of S is d then d (and any multiple of
d can be written as a finite additive combination of multiples of elements of S.

The non-negative integers form the collection of divisors for integers. We can
think of a divisor d as something for which we can say an integer $a$ is a
multiple of $d$” ora is divisible by d.”

Divisors have the following properties. Given two divisors, we can multiply them
to get a new divisor; if a is a multiple of d1 and b is a multiple of d2 then a · b
is a multiple of d1 · d2. Given two divisors, we can form the greatest common
divisor; it divides any element which is divisible by both of them.

Can we make sense of divisors in a general ring? The division algorithm is
something special for integers. Even more so, it may not always be possible to
identify a single element of a ring that is the greatest common divisor of two
elements of the ring.

Example: Consider the set R of real numbers of the form a + b
√

5 where a and
b are integers with the usual operations of addition and multiplication of real
numbers.

Exercise: Check that R as defined above is a ring.

Now we have (−1 +
√

5) · (1 +
√

5) = 4 = 2 · 2. It follows quite easily that there
is no element other than ±1 that divides both 1 +

√
5 and 2. On the other hand,

we see that (1 +
√

5) · a + 2 · b = 1 has no solution with a and b in R.

This says that we should not think of 1 as the greatest common divisor of 1 +
√

5
and 2 as it is not an additive combination of multiples of these two numbers.
The only solution is to think of an idealised” divisor which divides all
such additive combinations. This led Dedekind and Kronecker to
introduce the concept of anideal divisor’‘which we have now shorted to the
name “ideal”.
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An ideal of R is a subset I of R which is closed under addition and (left or right)
multiplication by elements of R. (If it is only closed under left multiplication by
elements of R, it is called a left ideal; similarly, we have right ideals.)

For any non-negative integer d, the multiples of d form the ideal dZ of Z.

Given ideals I and J , we can create the set I · J that consists of additive
combinations of elements of the form a · b for a in I and b in J . Similarly, we can
create the set I + J consisting of elements of the form a + b for a in I and b in J .

Exercise: Show that (mZ) · (nZ) = (mn) · Z and (mZ) + (nZ) = gcd(m, n)Z.

Exercise: More generally, for any ring R and ideals I and J in R, show that
I · J and I + J are ideals in R.

Thus ideals have properties similar to those of divisors. Note that I + J is to be
thought of as similar to the greatest common divisor of the divisors associated
with I and J .

Homomorphisms

The word homomorphism” is meant to be a combination ofhomo’‘, mean-
ing similar, “morphism” meaning transformation; a transformation between
similar things.

Given a ring R, we can define a set map r : Z→ R by defining the image of 0 as
0 (in R), the image of a positive integer n is the sum of n copies of 1 (in R), the
image of a negative integer −n is the sum of n copies of −1 (in R).

Exercise: The above map r has the property that r(m + n) = r(m) + r(n) and
r(m · n) = r(m) · r(n).

A set f : R→ S, where R and S are rings is called a homomorphism of rings if
f(a + b) = f(a) + f(b) and f(a · b) = f(a) · f(b).

For example, we can examine the homomorphism r : Z→ Z/n. The collection
of all elements that go to 0 under r are precisely the elements of nZ, an ideal.

Exercise: More generally, if f : R→ S is a homomorphism of rings then define
the set I to consist of elements a such that f(a) = 0. Check that I is an ideal.

The set of such elements is called the kernel of the homomorphism f and denoted
as ker(f).

Conversely, suppose I in an ideal in R. Given a in R, we define a + I as the
subset of R that consists of elements of the form a + b where b is in I.

The power set P (R) consists of subsets of R. We define the set R/I as the subset
of P (R) that consists of the subsets of the form a + I of R where a is an element
of R.

Exercise: What are the elements a and a′ of R such that a + I = a′ + I?
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Given subsets A and B of R, we can define A⊕ B to be the subset of R that
consists of elements of the form a + b with a in A and b in B. We also define
A�B to be the subset of R that consists of elements of the form a · b with a in
A and b in B.

Exercise: Check that R/I with the operations ⊕ and � as addition and
multiplication forms a ring with 0 + I and 1 + I as additive and multiplicative
identity respectively.

Note that from one point of view an element of R/I is a subset of R. However,
beyond the initial calculations below it is convenient not to think of it in these
terms; just as we do not think of 42 as 1 added to 0 42 times, or as the size of the
set of elements {0, . . . , 41}. Like in Sage we can use mathematical objects without
thinking of how they are stored, it is useful to learn how to use mathematical
concepts without worrying about a particular way of constructing them.

There is a natural map i : R → R/I which sends a to the element a + I. The
kernel of i consists precisely of I. Thus, given an ideal, we have a homomorphism
which has that ideal as its kernel.

This gives us another way to approach ideals: as kernels of homomorphisms to
other rings.

Conclusion

In this section we have seen only a few examples of rings, ideals and homomor-
phisms. However, we have given general definitions and properties. When we
study other examples later during the course, we will see how these definitions
and properties have wider applicability.
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