
Maximum Likelihood Estimators

We examine a series of (independent, identical) experiments (for example, exper-
iments to measure a certain unknown quantity V ). Let M1, M2, . . . denote the
actual results obtained which are assumed to be numerical for simplicity.

We want to examine the probability p of obtaining the result that we experimen-
tally observed.

For example, suppose that the different experiments are independent. Then the
probability p is the product of pi where the latter is the probability of obtaining
the measurement Mi in the i-th experiment.

If the result of each experiment is a discrete random variable, then we can
calculate the probability as pi = P (Xi = Mi).

On the other hand, the random variable (representing the result of the experi-
ment) may take a continuum of values with a distribution function Fi. In this
case, we look at the least count ei of our experimental apparatus for the i-th
experiment, and write

pi = P (Xi ∈ (Mi − ei,Mi + ei]) = F (Mi + ei)− Fi(Mi − ei)

Usually, we can only write p formally, since it may not be possible to know the
exact probability mass functions or probability distribution functions. However,
we can very often write these functions in terms of parmaters that are unknown.
For example, the unknown quantity V we are try to measure could be thought
of as such a parameter. In that case, we can think of p as varying with V ; in
other words, we can think of p as a function of V .

More generally, let t1, t2, . . . be parameters that can be used to determine
the probabilties pi (and perhaps the probability mass functions or distribution
functions). We can then think of p as a function L(M1, . . . ; t1, . . . ) of the results
Mi and the parameters ti. This function is called the likelihood function.

We would like to estimate these parameters, based on the experiments performed.
Such estimators Ti(m1, . . . ) are functions of the resuts; so that our estimates
are ti = Ti(M1, . . . ).

The method of Maximum Likelihood Estimation is to choose these estimators
(functions) in such a way that L(M1, . . . ; t1, . . . ) takes its maximum value when
we put ti = Ti(M1, . . . ).

This method was formally proposed and analysed by Ronald A. Fisher (it had
already been used earlier by Gauss and others).

It is easier to understand this theoretical framework trough some typical exam-
ples.
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Coin Choice

Suppose a box contains a number of coins each having its own probability of
getting a head. For example suppose we have coins C1, C2, C3 and C4 with
probability of Head being 1/2, 2/3, 1/4 and 1.

We pick a coin from the box, but we don’t know which one it is! We try to
figure out which one by flipping it a large number N of times. Assuming that
the distinct flips are independent, the probability of a given sequence of Heads
and Tails is given by pr(1− p)N−r; where the value of p depends on which coin
was chosen. For definite-ness, let us assume that there are r = 40 Heads out of
N = 100 coin tosses.

We can then make a table as follows:

p 1/2 2/3 1/4 1

L 1/2100 240/3100 360/4100 0

Here L is the likelihood that the given value of p is the “real” one. The ratio
of the first value by the second value is a power of 35/27 = 243/128 which is
greater than 1. Thus, the first value is greater than the second. Similarly, the
ratio of the first value by the third is a power of 25/33 = 32/27 which is greater
than 1. Hence the first value is greater than the third as well. It is clear that all
the other values are greater than 0.

We conclude that the maximum likelihood is that the value of p is 1/2. In other
words, we picked the first coin.

Coin Flips

Now lets take a single coing for which we aretrying to find out its bias. This is
like the previous experiment, but with infinitely many coins, one for each value
of p such that 0 < p < 1.

As before we assume that distinct coin flips are independent, we put the proba-
bility of Head as p and the probability of tail as 1− p.

As in the first experiment we record the exact sequence of Heads and Tails
obtained.

We start with the results of 10000 tosses of a slightly biased coin. Let us see
whether we can detect the bias.

> dat <- rbinom(10000,1,0.49)+1 # to make it 1,2 rather than 0,1
> coin <- as.factor(c('T','H')[dat])
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The probability of the given sequence of heads and tails is given by pr(1− p)s

where r is the number of heads and s is the number of tails (r + s = 10000). In
our case, we get

> tapply(coin,coin,length)
T H

5145 4855

So the likehood function is L(p) = p5145(1−p)4855 (or more generally, L(r, s; p) =
pr(1− p)s. The question we have to resolve is: Given r and s, what is the value
of p for which this takes the maximum value? Using some elementary calculus,
this amounts to

pr(1− p)s

(
r

p
− s

1− p

)
= 0

Equivalently r(1− p)− sp = 0 or p = r/(r + s). In other words, the estimate
that is most likely to fit the results obtained is p = 0.4855.

Note that this result depends only on the number of heads and the total number
of coin flips since the Likelihood also depends only on those counts.

Secondly note that the estimator has the simple description as the frequency of
occurence of heads. This “classical” estimator is therefore also the maximum
likelihood estimator in this case.

Waiting Time

Cars go past a certain checkpost with a frequency c which is unknown. A guard
records the waiting times t1, t2,. . . for various cars. We want to use Maximum
Likelihood Estimation to write down an estimator for c given the values t1, t2,
. . . .

The waiting time distribution is given by the Poisson density fX(t) = ce−ct

when the frequency is c. Let us assume that the least count of the guard’s stop
watch is e.

The probability of the guard’s i-th observation is∫ ti+e

ti−e

ce−ctdt = e−c(ti−e) − e−c(ti+e)

We thus want to maximize the function

L(c) =
n∏

i=1

(
e−cti

(
ece − e−ce

))
= e−c

∑
i

ti(2n)
n∏

i=1
sinh(ce)

(Here sinh(x) = (ex − e−x)/2 is called the hyperbolic sine function.)
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By calculus, we are looking for c such that

0 = dL

dc
= L(c)

(
−

n∑
i=1

ti + e

n∑
i=1

coth(ce)
)

(Here coth(x) = (ex + e−x)/(ex − e−x) is the hyperbolic cotangent function.)

We can assume that e is very small, so that (ce) coth(ce) is approximately 1,
then the approximate solution of this equation is given by the slightly different
equation

0 = −
n∑

i=1
ti + n/c or c = n∑

i ti

In other words, the estimator for the frequency c which is the ratio of the number
of cars seen by the total amount of time is close to the maximum likelihood
estimator for c.

This justifes the fact that the parameter c in the Poisson density is called the
frequency!

Continuous Probability Density

The above technique can be applied more generally to the case of a continuous
probability density. In that case, we have

P (|X − x| < e) =
∫ x+e

x−e

fX(s)ds ' fX(x)e

for small values of e. Thus, instead of finding the maximum of the likelihood
function (with parameter c)

L(c) =
n∏

i=1
P (|Xi − xi| < e|c)

we can find the maximum of the likelihood density

l(c) =
n∏

i=1
f(xi|c)

This will give an estimator which is close to the maximum likelihood estimator
for small values of e. Moreover, as in the case above, it is often easier to calculate
than the maximum likelihood estimator.

Normal Distribution

We can apply the above to a sequence of experiments which result in a sequence
X1, X2, . . . of random variables each of which is distributed according to the

4



normal distribution with mean m and standard deviation s. The numbers m
and s are the parameters which we wish to estimate based on the results of the
experiments.

To do this we write

l(m, s) = 1
sn

∏
i=1

exp
((
−xi −m

s

)2
/2
)

Note that since the
√

2π factor in the denominator is a constant, it can be
ignored while finding the maximum of l(m, s)

Secondly, since log(y) is an increasing function of y, we can replace the problem
of finding the maximum of l(m, s) by finding the maximum of

k(m, s) = log(l(m, s)) = −n log(s)−
n∑

i=1

(xi −m)2

2s2

Taking derivative with respect to m and putting it as 0, we find

0 = ∂k

∂m
= − 1

s2

n∑
i=1

(xi −m)

From this we deduce the estimator for m given by the formula∑n
i=1 xi

n

which is called the sample mean.

Similarly, we take the derivative with respect to s and it as 0 to get

0 = ∂k

∂s
= −n

s
+ 1
s3

n∑
i=1

(xi −m)2

Then we see that we obtain an estimator for s2 as∑n
i=1(xi −m)2

n

which is similar to the usual formula for variance. (However, see the discussion
below!)

Biased and Unbiased Estimators

As seen above an estimator is a function f(X1, . . . , Xn) of the observational
results Xi which are themselves random variables. Thus, it makes sense to talk
about the mathematical expectation of this function. When the expectation
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E(f(X1, . . . , Xn)) turns out to be the same as the value of the parameter that
we are estimating, then we say that the estimator is unbiased. Otherwise, we
say that the estimator is biased.

One can show that the sample mean (
∑

i Xi)/n is an unbiased estimator.

On the other hand the expression (
∑

i(Xi−m)2)/n in which m is taken to be the
sample mean, is no longer an unbiased estimator. One way to understand this is
to note that the variables Xi −m are no longer independent since nm =

∑
i Xi.

It turns out that (
∑

i(Xi−m)2)/(n−1) is an unbiased estimator for the variance
s2. Hence, it is this latter expression which is called the sample variance. For
large values of n there is hardly any difference between this formula and the
earlier one, so we need not fuss about it too much!

Both of these unbiased estimators are good approximations to the maximum
likelihood estimators m and s2 for the results of independent identical random
variables drawn from a normal distribution with mean m and variance s2.
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