Solutions to Assignment 10

1. We throw a fair die 100 times looking for a ' 6 '.
(a) Write a formula for the probability that there are there are at least 50 and at most 60 ' 6 's.

Solution: The random variable X that counts the number of heads follows the Binomial distribution. Hence,

$$
P(50 \leq X \leq 60)=\frac{1}{6^{100}} \sum_{r=50}^{60}\binom{100}{r} 5^{100-r}
$$

(b) Write an approximate formula for the above probability as an integral.

Solution: We use the de Moivre-Laplace approximation or Central Limit Theorem to get the approximation

$$
P(a \leq(X-m) / \sigma \leq b) \simeq \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} \exp \left(-s^{2} / 2\right) d s
$$

Here $m=100 / 6$ and $\sigma^{2}=500 / 36$ so we get

$$
P(50 \leq X \leq 60) \simeq \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} \exp \left(-s^{2} / 2\right) d s
$$

where $a=(50-50 / 3) /(5 \sqrt{5} / 3)=4 \sqrt{5}$ and $b=(60-50 / 3) /(5 \sqrt{5} / 3)=26 / \sqrt{5}$.
2. Estimate the following numbers. In each case, first define the number by a series or sequence and then prove the relevant convergence.

$$
\pi ; \log (2) ; \exp (1) ; \sqrt{10} ; \exp (-0.5)
$$

Solution: We have the series $\pi / 4=1-1 / 3+1 / 5-1 / 7+\ldots$ is an alternating series. Hence the error is the same as the first term which is dropped. To get the value with error less than $1 / 11$ we can add the terms

$$
\pi / 4 \simeq 1-1 / 3+1 / 5-1 / 7+1 / 9=263 / 319
$$

This says that π lies in the range [1052/319 - 4/11, 1052/319 $+4 / 11]$.

Similarly, we have the series $\log (2)=1-1 / 2+1 / 3+\ldots$. However, in this case we know that

$$
\log (2)=-\log (1 / 2)=-\log (1-1 / 2)=1 / 2+(1 / 2)^{2} / 2+(1 / 2)^{3} / 3+\ldots
$$

This series converges much faster since the error on dropping all terms after k is at most $1 / 2^{k} k=1 /\left(2^{k+1} k\right)+1 /\left(2^{k+2} k\right)+\ldots$. So we get that upto an error of at most $1 / 24$

$$
\log (2) \simeq 1 / 2+1 / 8+1 / 24=2 / 3
$$

Hence, $\log (2)$ lies in the interval $[2 / 3-1 / 24,2 / 3+1 / 24]$.
We have the series $\exp (1)=1+1+1 / 2+1 / 6+1 / 24+\ldots$ The sum of all terms after the k-th term is at most $1 / k!=(1 / k!)(1 / 2+1 / 4+\ldots)$ as long as $k \geq 1$. Hence, upto an error of at most $1 / 120$ we have

$$
\exp (1) \simeq 1+1+1 / 2+1 / 6+1 / 24+1 / 120=163 / 60
$$

Hence $\exp (1)$ lies in the interval [163/60-1/120, 163/60 $+1 / 120]$.
We have $3^{2}<10$, so $a_{0}=3<\sqrt{10}$ and $\sqrt{10}<10 / a_{0}=10 / 3=b_{0}$. We can improve on this by taking c to be the average of a_{0} and b_{0} which is $19 / 6$. Now $c^{2}=361 / 36>10$. So we take $b_{1}=19 / 6$ and $a_{1}=10 / b_{1}=60 / 19$. We then have $\sqrt{10}$ lying in the interval $[60 / 19,19 / 6]$. Note that this interval has length $1 /(6 * 19)$ which is quite small!
We have the alternating series $\exp (-1 / 2)=1-1 / 2+1 / 8-1 / 48+\ldots$ The error by dropping the k-term onwards is at most the size of the k-th term. So, up to an error of $1 / 384$ we have

$$
\exp (-1 / 2)=1-1 / 2+1 / 8-1 / 48=29 / 48
$$

Hence $\exp (-1 / 2)$ lies in the interval $29 / 48-1 / 384,29 / 48+1 / 384]$.
3. We repeatedly flip two fair coins. Let X_{i} denote the random variable that takes the value 3 if the i-th double flip returns two Heads and -1 if it returns anything else. Which of the following statements are True? Justify your answer.
(a) The random variable X_{n} converges to 0 in probability.

Solution: False. Since $P\left(\left|X_{n}\right| \geq 1\right)=1$, we see that $P\left(\left|X_{n}\right|>1 / 2\right)$ does not converge to 0 as n goes to infinity.
(b) The random variable $W_{n}=X_{n} / n$ converges to 0 in probability.

Solution: True. Since $P\left(\left|X_{n}\right|<1 / 2\right)=0$, we see that $P\left(\left|W_{n}\right|<1 / 2 k\right)=0$ for $n>k$.
(c) The random variable $Y_{n}=\left(\sum_{i=1}^{n} X_{i}\right) / n$ converges to 0 in probability.

Solution: True. Since $E\left(X_{n}\right)=0$ and $\sigma^{2}(X)=1 / 2$, we have Y_{n} converges to 0 in probability by the Law of Large Numbers.
(d) The random variable $Z_{n}=\left(\sum_{i=1}^{n} X_{i}\right)$ converges to 0 in probability.

Solution: False. If Z_{n} converges to 0 then so does Z_{n-1} and hence so does $X_{n}=Z_{n}-Z_{n-1}$. We have already seen in the first part that this is not so.
4. (a) For what values of a and b can the following be the characateristic function of a random variable?

$$
a^{2} \cos (t)+b^{2} \sin (t) / t
$$

Solution: We have the condition that $\phi(0)=1$ if ϕ is to be the characteristic function of a random variable. Thus the conditions is $a^{2}+b^{2}=1$.
(b) The characteristic function of a random variable X is given by

$$
a \sin (t) / t+b \cos (-3 t)+c \exp (2 t \sqrt{-1})
$$

What are the values of a, b and c for which this has mean 0 and standard deviation 1 ?

Solution: To be a characteristic function we must have $\phi(0)=1$. This gives the equation $a+b+c=1$.
To have the mean 0 , we must have $\phi^{\prime}(0)=0$, This gives the condition $2 c=0$.
Finally to have standard deviation as 1 , we must have second moment as 1 also (since mean is 0). So we must have $\phi^{\prime \prime}(0)=-1$. This gives the equation $a / 3+9 b+4 c=1$.
We see that there is no solution for these equations. So this is not possible.

