Write your name and/or registration number in the box provided.
Write your answers in space provided.
You have 1 hour to complete this exam.

Name: \qquad Reg. No:

Question:	1	2	3	4	Total
Points:	3	4	5	3	15
Score:					

1. We flip an unbiased coin 100 times.
(1 mark) (a) Write a formula for the probability that there are there are at least 40 and at most 60 heads.

Solution: The random variable X that counts the number of heads follows the Binomial distribution. Hence,

$$
P(40 \leq X \leq 60)=\frac{1}{2^{100}} \sum_{r=40}^{60}\binom{100}{r}
$$

(2 marks) (b) Write an approximate formula for the above probability as an integral.
Solution: We use the de Moivre-Laplace approximation or Central Limit Theorem to get the approximation

$$
P(a \leq(X-m) / \sigma \leq b) \simeq \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} \exp \left(-s^{2} / 2\right) d s
$$

Here $m=50$ and $\sigma=5$ so we get

$$
P(40 \leq X \leq 60) \simeq \frac{1}{\sqrt{2 \pi}} \int_{-2}^{2} \exp \left(-s^{2} / 2\right) d s
$$

2. On the average 5 wickets fall in each innings (20 overs) in a typical T20 cricket match. You watch 10 overs (corrected to 1 over) of some match.
(a) Write a formula for the probability that you will see exactly 2 wickets fall.

Solution: The expected number of wickets in 1 over is $c=5 / 20=1 / 4$. We will use the Poisson distribution to get

$$
P(X=2)=\frac{c^{2}}{2!} e^{-c}=\frac{1}{32} e^{-1 / 4}
$$

(1 mark) (b) Write a formula for the probability that you will see at least 1 wicket fall.
Solution: The expected number of wickets in 1 over is $c=1 / 4$. We will use the Poisson distribution to get

$$
P(X \geq 1)=\sum_{k=1}^{\infty} \frac{c^{k}}{k!} e^{-c}=1-e^{-1 / 4}
$$

(c) Estimate upto 2 places of decimal the probability that you will see no wicket fall.

Solution: As seen above we need to calculate $e^{-1 / 4}=1-P(X \geq 1)$.

$$
1-1 / 4+1 / 32-1 / 384+\ldots
$$

We see that the terms beyond are less than $1 / 1000$ so we can neglect that and all successive terms since this is an alternating series. So we get

$$
(384-96+12-1) / 384=299 / 384
$$

which is roughly 0.78 . So the answer is roughly 0.78 upto two places of decimal.
3. We repeatedly flip a fair coin. Let X_{i} denote the random variable that takes the value 1 if the i-th flip returns Head and -1 if it returns Tail. Which of the following statements are True? Justify your answer.
(a) The random variable X_{n} converges to 0 in probability.

Solution: False. Since $P\left(\left|X_{n}\right|=1\right)=1$, we see that $P\left(\left|X_{n}\right|>1 / 2\right)$ does not converge to 0 as n goes to infinity.
(1 mark)
(b) The random variable $W_{n}=X_{n} / n$ converges to 0 in probability.

Solution: True. Since $P\left(\left|X_{n}\right|<1 / 2\right)=0$, we see that $P\left(\left|W_{n}\right|<1 / 2 k\right)=0$ for $n>k$.
(1 mark)
(c) The random variable $Y_{n}=\left(\sum_{i=1}^{n} X_{i}\right) / n$ converges to 0 in probability.

Solution: True. Since $E\left(X_{n}\right)=0$ and $\sigma^{2}(X)=1 / 2$, we have Y_{n} converges to 0 in probability by the Law of Large Numbers.
(2 marks) (d) The random variable $Z_{n}=\left(\sum_{i=1}^{n} X_{i}\right)$ converges to 0 in probability.
Solution: False. By the Central Limit theorem the random variable $\sqrt{n} Y_{n}=$ Z_{n} / \sqrt{n} converges in distribution to the normal distribution. It follows that,

$$
P\left(\left|Z_{n}\right|>\sqrt{n}\right)=\frac{2}{\sqrt{2 \pi}} \int_{-\infty}^{-1} e^{-s^{2} / 2} d s>0
$$

Is a fixed positive constant for all n.
(1 mark) 4. (a) For what value of a can the following be the characateristic function of a random variable?

$$
(1 / 3) \cos (t)+a \sin (t) / t
$$

(a)
$2 / 3$
(2 marks) (b) The characteristic function of a random variable X is given by

$$
(1 / 3) \cos (t)+(1 / 3) \cos (2 t)+(1 / 3) \exp (3 t \sqrt{-1})
$$

Calculate $E(X)$ and $\sigma^{2}(X)$ for this random variable.
Solution: We calculate the derivative at $t=0$ to get $\sqrt{-1}$. This means that $E(X)=1$.
We calculate the second derivative at $t=0$ to get

$$
-(1 / 3)-(1 / 3) 4-(1 / 3)(9)
$$

This gives $E\left(X^{2}\right)=14 / 3$. Thus $\sigma^{2}(X)=E\left(X^{2}\right)-E(X)^{2}=11 / 3$.

