
Lies, Damned Lies and Statistics

The science of statistics is all about interpreting data. Now that people are
talking about “big data” this is all the more interesting. The reasoning behind
the quote above (from Mark Twain or Benjamin Disraeli depending on whom
you believe) is that statistics can be used in a very convincing way to “prove”
something—even things you “know” are false!
When we model the real world using mathematics, we decide through observation
(or wishful thinking!) which propositions are True/False (e.g. Maxwell’s equations
hold in all intertial frames) and make deductions using these propositions as
axioms. We then test our theories by verifying the collection of propositions so
obtained.
If we throw probability into the mix, we could assign probabilities to various
propositions. As seen earlier in this course, this would allow us to make statements
like, with a probabilty at least 60%, the measurement of (a random variable) X
will result in a value that lies in the interval [9.80, 9.82]. We would then like to
test these theories, but we cannot expect the same level of certainity as we found
with the earlier deductive system. In fact, even the assignment of probabilities
based on observation needs to be examined as we cannot be certain that such
assignments are correct.
Statistics provides us with a systematic way of converting observational data
into probabilities for various propositions. Statistics also provides us with a
systematic approch to design experiments to verify the deductions based on
theories involving probabilities.

A Simple Experiment

We conduct a simple experiment of flipping a coin a large number of times.

> load('coin.RData.gz')
> tapply(coinf,coinf,length)
H T
511 489

Does this mean that the coin is biased? Assuming that the coin is unbiased,
what is the probability that we would get a result such as the one above?

> dbinom(511,1000,0.5)
[1] 0.01980746

In other words, there is only a 2% chance of getting the result such as the one
above! Does this mean that the coin is biased? No! The reasoning is flawed,
after all we can imagine that with an unbiased coin we should get 500 Heads
and Tails; what is the probability of that?
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> dbinom(500,1000,0.5)
[1] 0.02522502

Just about 0.5% more! So this was not the correct way to interpret the experi-
ment! Instead, we should calculate the probability of a deviation of at least 10
from 500.

> 1-sum(dbinom(490:510,1000,0.5))
[1] 0.50666

Thus there is a probability of almost 51% that there will be such a deviation!

In summary, all we can conclude is that the results are consistent with the
hypothesis that the coin is unbiased. This does not prove that the coin is
unbiased. All we can state is that we have not proved that the coin is biased!

Suppose that the results were different. For example, we calculate:

> 1-sum(dbinom(486:514,1000,0.5))
[1] 0.3591173

So, if we had got 515 Heads, then the probability of that happening seems to
be significantly less than 50%. Does that mean that the coin is biased? How
confident can we be of making such an assertion?

Conversely, suppose we have only 503 heads, can we now assert with greater
confidence that the coin is, in fact unbiased?

Are there any other tests (other than merely counting Heads and Tails) that we
can think of? Sure. For example, we could count lengths of “runs” and compare
with the negative binomial distribution.

> runs <- rle(as.vector(coinf))
> runf <- factor(runs$length)
> tapply(runf,runf,length)

1 2 3 4 5 6 7 8
242 136 72 20 15 12 5 1

We compare that with the expected numbers calculated using the exponential
distribution

> sapply(1:8, function(k) { trunc(1000*2**(-1-k)); })
[1] 250 125 62 31 15 7 3 1

The agreement is not bad, but does this increase our confidence?

The above discussion should give a flavour of what statistics is about.
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Tag Cloud for Statistics

Let us discuss some terms that are relevant to statistics.

Descriptive Statistics

This is where we find coarse descriptions of the data, through simple calculations
of quantities like the mean, variance, median and mode. Through plotting the
data or use of other forms of data visualisation.

Many of the above techniques require the data to be numerical. However, we
can also try to study completely unstructured data with an attempt to infer
structure. When this process is automated, it is called machine learning. For
unstructured multidimensional data, tag clouds are a way of visualising data
too!

Statistical Inference

After examining the data (or from some prior knowledge) we deduce that the
data follows a certain “class” of distributions. For example, for many physics
experiments to determine “constants of nature”, we may expect the distribution
to be centred around the ’real" value m uniformly distributed in a small interval
(determined by the precision of the experiment).

How do we estimate the value of m based on the experiments and what is the
likelihood that the inferred value differs from the “true” (or real) value by an
error less than some number e.

More generally, can we use experimental data to estimate the distribution or at
least some key aspects of the distribution?

Experimentation and Testing

Once we have made inferences, the next step is to test the resulting hypothesis.
Often, these are statements about the expectations of random variables over a
large population, We thus need to sample the population carefully.

More generally, when there are a number of competing possibilities, we need to
design the experiments so that we can clearly differentiate between them.

Finally, we must measure the significance of our results. If the results are indeed
significant, we can go forward and build the theory further, else we must begin
our analysis again!
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