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Summary. Given that matter is distributed in a lumpy
fashion, in galaxies and clusters of galaxies in the
present universe, perhaps in small lumps at an early
epoch, one would suppose that the grainy distribution
has some effect on the growth of irregularities. It has
been suggested that there is a substantial minimum

rate of growth of structure once grains form. However,
it is shown here that the effect has been overestimated,
so that it seems questionable whether it could have
played an interesting réle in the origin of galaxies.
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L. Introduction
a) The Question

The question to be discussed is, what is the effect of a
lumpy distribution of matter on the growth of ir-
regularities in an expanding universe? To keep the
disussion simple, it will be supposed that the universe
can be approximated by the Einstein-de Sitter cos-
mological model (g, = 1/2, A = p =0), that the typical
distance between grains and the sizes of any grain
clusters are much smaller than the horizon ct, and
that non-gravitational forces may be ignored. Then it
has been suggested (in two contexts, by Carlitz et al.,
1973, and by Press and Schechter, 1974) that there is a
minimum rate at which irregularities develop out of the
original granular distribution, such that

M(@)oct. (1)

Here M(t) is the typical mass of the gravitationally
bound lumps of matter that are fragmenting out of
the general expansion at epoch t.

This is an important result if true, for, as pointed out by
Press and Schechter, it would strongly sharpen the
predictions of the gravitational instability picture.
One notices also that the mass within the horizon varies
in proportion to t, the same as the minimum rate of
growth of irregularities fixed by Eq. (1). Thus, following
Carlitz et al., one can imagine that in the very early
universe some local process (perhaps involving the
strong or electromagnetic interactions) causes an in-
itially smooth and homogeneous distribution of matter
to break up into small grains. Causality would suggest
that the grains must be non-relativistic, grain size <ct.
As the universe expands the grains would grow, with
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M(t) a constant fraction of the horizon, and in time
would reach the mass of a galaxy. The argument as
stated here ignores the complexities introduced by the
Primeval Fireball radiation, but it does illuminate the
proposed principle: that causal processes operating
on microscopic scales in the very early universe could
set in train a gravitational process that leads to the
development of irregularities on the scale of the
galaxies.

My purpose here is to argue that, while there is a
minimum rate of increase of M (f) under the assumed
conditions, it is fixed by the equation

M(t)oct*. )

This says that the ratio of M(t) to the mass in the
horizon varies as ¢t~ 7. Thus the development of large-
scale structure in the present universe could not have
been initiated by causal processes operating at epoch t
if t were too small. Of course this does not vitiate the
gravitational instability picture, for by adjusting the
spectrum of initial irregularities one can always increase
the rate of change of M (). It does say that, until we can
find a deeper theory of the nature of the universe, we
cannot hope to predict the existence of galaxies from our
knowledge of (or speculations on) microscopic processes
in the very early universe. However, the growth rate
given by Eq. (2) still might be interesting. For example,
we might suppose that the present value of M is 10'° M,
perhaps the mass of a supercluster of galaxies. Then
in the Einstein-de Sitter model M (f) would have been
equal to the mass within radius ct at redshift z~ 108,
when the matter density would have been ~1075 gecm™ 3.
This is the earliest epoch at which some causal process
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could have caused an initially smooth mass distribution
to fragment into a granular distribution on the desired
scale. It is hard to see how the strong or electromagnetic
interactions could have forced the development of
lumps of size ~ct when the matter density is this low,
although, given our meager understanding of what the
universe may have been like at such a large redshift,
it would be dangerous to conclude that we can rule it
out.

b) Comparison of the Two Arguments

The two estimates of M(t) are based on different
measures of irregularity on the scale x,: the power
spectrum of the mass density function at k,=2mxg?!,
and the variance (6 M)? of the mass within a randomly
placed sphere of radius x,. The discrepancy arises
because the latter quantity can “see” components of
the spectrum at wave number k> xg' (wavelength
< x,) through the sidelobes of the window function
fixed by the sphere. If the power spectrum increases
with increasing k more rapidly than the first power of k
then the dominant contribution to (§M)? is from the
power spectrum at wavelengths much less than x,.
Equation (2) is based on the linear perturbation result.
One introduces the fractional density contrast and its
Fourier transform,

o(x, t) = (o(x, t) — o ())/@o (t) »

3
5 ()= [ 6(x,t)exp(ik-x)d>x/V. )
14
Here g, () is the mean density at epoch ¢. The expanding
spatial coordinates x are related to the usual Cartesian
coordinates r by

x=r/a. “

The integral in Eq. (3) is over the fixed volume V in x
coordinates. I take it that d(x, t) is periodic in V. This
is only a mathematical convenience, not a physical
assumption, for V is much larger than the size of any
clustering in the matter distribution. The expansion
parameter a satisfies the cosmological equation

d*a 47

i =— 5 Gooa. )

In linear perturbation theory (and for the Einstein-
de Sitter cosmological model) J,,(t) is a sum of a
growing term oct?® and a decaying term oc t~*. When
is this linear approximation valid? A standard criterion
is based on the contribution to the variance of d(x)
by Fourier components with wave number <k,

(x> = ), 16ul. (©)

k=ko

If this number is less than unity, then, it is argued, the
density contrast on the scale of x, is small and the
linear perturbation result should be valid. When

{8%(x,)> approaches unity the density contrast on the
scale x, approaches unity, and bound systems of this
size should separate out from the general expansion.
If the power spectrum at long wavelength is a power law,

10,7 oc k", ™

this argument says that the typical mass of systems
that fragment out of the general expansion at epoch ¢
varies with time as

M(t) oc 4+ @®)

Can we place any restriction on n? Suppose that,
starting with a constant mass density, we draw the
material up into small lumps. By shifting each mass
element through a small distance we in effect differentiate
the density function, and hence introduce a factor k in
the Fourier transform J,. Under the assumption that
there is no short-range order among the positions of the
lumps, we then conclude that the power spectrum
varies as k? at long wavelength. However, this operation
ignores momentum conservation. Suppose the lumps
were formed by some local non-gravitational process
that conserves momentum (or by the gravitational
instability operating on earlier, smaller, lumps). Then
the shifts of mass elements cancel in pairs, leaving
second derivatives in the density function, k? in the
Fourier transform, or k* in the power spectrum. Thus it
appears that n <4. This limit in Eq. (8) yields Eq. (2).
Equation (1) is based on an energy argument. One
considers the frequency distribution of M (x), the mass
within a randomly placed sphere of radius x, (measured
in the expanding x coordinates). Let M and (6 M)*
be the mean and variance of M (x). Then it is assumed
that GM 6 M/(ax,) is a rough measure of the scatter
of gravitational energy of irregularities on the scale of x,,
so that this quantity is the typical binding energy of
developing proto-lumps of size ~ x,, mass M. Knowing
the binding energy one can estimate when the proto-
system will stop expanding. The result is expressed by
the equation

OM [t\*3
7(7) ~1. ©)

Here 6 M is evaluated at the starting time t; and the
lumps fragment out at time ¢. This argument certainly
is valid for spherically symmetric irregularities (cf. e.g.,
Peebles, 1969, pp. 25-26), but it is perhaps less con-
vincing when matter is distributed in lumps. Now é M
ought to vary with M at least as rapidly as

M oc MM3. (10)

As in the discussion of the power spectrum, one imagines
starting with a uniform density, ¢=constant, and
drawing the matter in separate non-overlapping patches
into separate lumps. Then §M is fixed by the mass
drawn across the surface |x’ — x| = x,. If there is not a
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short-range correlation among the positions of the
lumps then (5 M)? is proportional to the surface area
oc x2 oc M?3. This yields Eq. (10), and Egs. (9) and (10)
give Eq.(1). Equation (10) does not depend on the
momentum conservation condition, because it is only
a question of how much mass moves across the surface
of x,, not how the material immediately within the
surface may be rearranged.

Now it is easy to see how the discrepancy between
Egs. (1) and (2) comes about. Since M (x) is the result
of an integral over the density function, one can express
(6 M)? in terms of the transform of the density,

SM\? 4
( TM ) = ZI0 Wikxo) = (5 | dsk"S“'zW(kxo()fn

W) = in (siny — y cosy)?.

Since M(x) is the convolution of ¢(x) with a window
function (equal to unity for argument |x| < x,, equal
to zero for |x| > x,), the spectrum of M (x) is the product
of the spectra of the two functions. The power spectrum
of the window function, W(kx,), is nearly equal to
unity for kx, <1, and has side-lobes at kx,>1 that
fall off as (kx,)”*. If the power spectrum |5,|*> does not
increase too rapidly with increasing k, then the sum
in the first of Eq.(11) effectively is cut off at ko~ xg?,
and we have

(OM/M)* =<6%(xo)) » (12)

where the right hand side is defined by Eq. (6). In this
case the two measures of the irregularity on scale x,
are nearly equivalent and the two arguments give the
same M (t). However, suppose n>1 [Eq.(7)]. Then in
Eq. (11) the dominant part of the sum is in the sidelobes.
The value of § M/M is determined by the power spectrum
where it breaks away from the power law behavior
of Eq. (7), not by the spectrum at k~ x5, and of course
6M/M is much larger than {6(x,)>. One notices also
from Eq. (11) that in this case (M/M)? oc x4 oc M™4/3,
in agreement with Eq. (10).

c) Lines of Attack

Now the problem is to decide which if either of the
two approaches may be trusted. For the perturbation
theory argument, one question is clear. When matter is
distributed in a grainy fashion linear perturbation
theory certainly is not adequate to describe the small-
scale behavior of the distribution. Under what condi-
tions can we apply linear perturbation theory to the
time dependence of the Fourier components 4,? In the
next section the general equation for the time variation
of 9, is written down. This equation looks like the
linear perturbation theory result with the addition of
some terms that, under reasonable circumstances,
vary as k*. Thus, if n <4 in the original power spectrum

[Eq.(7)], linear perturbation theory applies for long
enough wavelengths. This shows that the energy
argument is literally false, for if 6 M/M measured the
energy of proto-lumps then the evolution of irregularities
associated with the lumps would fill in the power
spectrum at small k to give n=1.

Discussion of the limits of perturbation theory does not
address the spirit of the “self-similar gravitational
bootstrap” conjecture discussed by Press and Schechter.
Starting with a grainy distribution of matter, they
observe that the time required for neighboring grains
to fall together and form larger grains is comparable
to the expansion time-scale. The picture is that the
growth of irregularities in the expanding universe
might be entirely due to this non-linear interaction
among neighboring newly-formed lumps, and the
speculation is that the rate of growth of structure in
this non-linear process is fixed by Eq. (1). This is a very
difficult concept to analyze because the process falls
outside the domains of perturbation theory on the one
side and equilibrium arguments on the other. One
possible point of attack is to make use of a remarkable
energy equation discovered by Layzer (1963; cf. Irvine,
1965). This equation relates the mean square peculiar
matter velocity (relative to the uniform general ex-
pansion) to an integral over the power spectrum of
the density irregularities. The only assumptions are
that the spatial distribution of matter is statistically
homogeneous and that the Newtonian approximation
is valid. In § III it is shown that if the bootstrap con-
jecture were valid the mean square peculiar velocity of
matter would vary with n [Eq.(7)] in a way opposite
to what seems reasonable on other grounds.

IL. Perturbation Theory and the Fine-grain Average

a) The General Equations

I assume that matter is concentrated in point masses m;
at coordinates x;(t). The particles are distributed through
space in a statistically uniform way (stationary isotropic
random process), and the distribution is expanding
roughly in accordance with Hubble’s law. I assume
the particles are so light and numerous that one can
choose a volume V such that (1) the number N of
particles in V is large; (2) structure in the distribution of
points on the scale V is negligibly small; and (3) the
expansion within V is non-relativistic.

For the point-particle distribution, Eq. (3) becomes
(for k+0)

8, () = Z m;exp(ik - x;)/My , (13)
J

where M;, is the total mass within V,

MV= QoaaV. (14)

The factor a® comes from the change of variables from x
to r [Eq. (4)]. Now consider the second time derivative
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of §, as defined by Eq.(13). This quantity depends on
first and second derivatives of x;(t). For the latter we
can use Newton’s equations of motion,

d’r; d’x; da dx; d*a Vo(x)
a2 e Pl tuE T T T
(pj(x)=%1tGQOa2x2+tpj(x), 15)
P2y, (x mo(x—x;) .

wzj()=4”Gz 1(3 l)—o'

The first equation expresses the acceleration in terms

of the x coordinates [Eq. (4)]. The potential is written

as the sum of two terms, so that the source for the second

term has zero spatial average and can be expressed as a

Fourier series,

wj(x)=—4nG Yy izlexpik-(x—x,). (16)
aVv . k

+0 I+

The result of using Eqgs. (15) and (16) in the expression
for the second derivative of §, is

d*s, 2 da dé,
£ % £ 49 =4 —

T Pl el 1Goyd,+A—C, an
where 4 and C are defined by the equations
A=4nGo, ¥ X B),

k' *0,k

1
B(k) = —- m;m,expi[(k—k')-x;.+k'-x
( ) M,% ];l jirh p [( ) Jj l] (18)

>~ Oy g Oy »
NI PO
C-%: M, (k dt) expik - x;.

In the equation that defines A the component k'=0
is not included in the sum because it does not appear
in Eq.(16), and the component k' =k is written sepa-
rately because it is much larger then the other com-
ponents. This gives the first term on the right hand side
of Eq. (17), where I have used the approximation

My 6, > Y m} expik - x;,

valid when N> 1. It is convenient finally to rewrite
the equation for A by replacing the index of summation
with k" =k — k. This gives

A= 27'CGQO Z D(k, k’) B(k,) s
k'*0,k (19)
K-k k-(K—FK)

k/2 I k' — kl2

Equation (17) is the usual zero-pressure first-order
perturbation theory result, with the addition of two
terms A and C that can represent non-linear effects.
(The term C can also represent the effect of kinetic gas
pressure.) Thus to find a criterion for the validity of

perturbation theory we must estimate the magnitudes
of A and C.

D=

b) Discussion

As a first step, let us suppose that at some chosen
starting time the particles have no peculiar velocities
(G =0) and that the power spectrum vanishes at k <k; .
In the linear perturbation solution the long-wavelength
part of §, would stay equal to zero. Equation (17)
says that J, at k<k,; starts to grow because of the
source term A. Since B vanishes at k' <k; [with the
exception of the very small correction term in the third
of Eq.(18)], Eq. (19) say that the magnitude of this
source term is approximately proportional to k? (for
D oc k? when k < k'). Thus at k < k, the Fourier spectrum
grows a “tail” oc k?, the power spectrum a tail oc k*.
As was remarked in § I, because of momentum conserva-
tion this k* tail is the expected consequence of the small-
scale motions of the particles.

Let us consider next the expected magnitude of A under
some simple assumptions. If the points x; are distributed
at random in V then

<I64*> = N<m*)/M?* ~N~*. (20)

To estimate {|4|?) we note that, when the particles are
randomly distributed, (B(k') B*(k”))> vanishes unless
k"=Fk or k"=k—k', and in either of these cases the
mean value is

(B(K)B*(k")> ~ N*(m?Y*M;*~N~2. 1)

Then on changing the sum over k' to an integral, we
have from Eq. (19)

vV

(AP = 5 (nGoof s [ 4K DN, )

Since

D* ~ (k/K)*, k' <k, )
~(k/K)*, K>k,

the integral converges for small and large k', giving

I41%> ~(Geo)* VE*IN?. (24)

Comparing this result with Eq. (20), we see that 4 may
be neglected compared to G g, 6, if there are many points
per cubic wavelength.

Next, let us consider the “sub-random” distribution,
where the J, have random phases and the power spec-
trum is approximately

162=N"1,  k>ky;
104 = N (k/ky)',  k<ky;

k, =2n(N/V)3.
This describes a point distribution that “looks” random
on scales less than or comparable to the mean distance
between points — there is no short-range order — but
that looks smoother than random on larger scales.

Since the J, are assumed to have random phases we
can use the second of the equations for B in Eq. (18)

(25)
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with Eq. (25) to find the expected value of B(k') B*(k").
The result is that if n>1/2 and k<k, the dominant
contribution to {|4|*) is from k' ~k,; and amounts to

<I41?) ~(Geo)* (kfky)* N71. (26)

Comparing this with Eq.(25), we see that 4 may be
neglected compared to Ggod, if n<4 and k<k,,
again in agreement with the argument of § I.

Now let us consider the role of the term C. We are
assuming that the peculiar velocities vanish at the
starting time. After one expansion time ~(Gg,) /2
the gravitational interaction among neighboring parti-
cles builds up a velocity dispersion

) ~ Gmk,/a, 27

dx\?
2 _ 28X
P=a ( 2
where ak7! is the typical particle separation [Eq. (25)].
If the particles are randomly distributed we can assume
that the last of Eq. (18) is a sum over uncorrelated terms,
so the mean of the square of C is

k* Nm?v*
2N~ D 2T Y
<|C| >_ M3a4

If the distribution were sub-random [in the sense of
Eq. (25)] it would not necessarily mean that the terms
in C are distributed in a sub-random fashion, but I
expect that |C|? would not be greater than the random
case [Eq. (28)]. Thus, after one expansion time C should
not exceed A [Eq. (26)].

What happens to C as the universe expands through
several more expansion times? Gravitationally bound
clusters of particles form, and the velocities of particles
within clusters can make a large contribution to C.
However, we know that this contribution must cancel
some of the terms in A, because we can re-do the
analysis treating each bound cluster as a new “point
particle”. As may be verified, this conclusion also
follows from the virial theorem.

I conclude that when the long wavelength part of the
spectrum is a power law with n <4 [Eq. (25)], the usual
zero-pressure first-order perturbation result is a valid
approximation for Fourier components with wave-
length much greater than the inter-particle distance.
This might be compared to the energy argument. Let
us start again with the particle distribution characterized
by Eq. (25). Then 6 M/M is given by Eq. (11) and satisfies
Eq.(10) if n>1. The argument is that in the original
particle distribution there are proto-clusters of mass M
and radius R(M ~ g, R®) with negative energy (gravi-
tational plus potential) amounting to ~GM §M/R.
Judging from the evolution of spherically symmetric
systems, the evolution of one of these proto-clusters
can be expressed as the sum of a growing mode of
perturbation and a decaying one, where the growingmode
is constructed from a uniform mass distribution by
shifting matter by the amount 6R~RSM/M on the
scale R. After several expansion times, when the growing

~(Goo)* (k/ky)* N7*. (28

mode dominates, the actual perturbation to particle
positions would be comparable to this value for R. But
if the shifts of particle positions were this large, the effect
would show up in the long-wavelength part of the
transform of the distribution as |5,;|?>cck. Since it has
been shown that this does not happen, the energy
argument is false when n > 1.

III. The Layzer-Irvine Equation

The following discussion is based on the point particle
picture and on the Newtonian approximation used
in § IL. The basic equation in the form that will be needed
here is derived in part (a) [Eq. (32), below]. The equation
is used in a discussion of the bootstrap conjecture in
part (b).

a) Derivation

The computation proceeds along the lines of the usual
derivation of energy conservation in Newtonian me-
chanics, except that the expanding coordinates of
Eq. (4) are used. On multiplying the second of Eq. (15)
by am;dx;/dt, summing over all particles j in V, using
Eq. (5), and re-arranging some terms, one finds

d 2 da 2 )
(E—Fa dt)Z?ma(dx/dt)

(29)

G d m,
_Z_aﬁij:m"(z;j |x;— x|

This is the usual Newtonian energy conservation law.
The Layzer-Irvine energy equation follows on setting

K= Z im;a®(dx;/dt)* /My, , (30)

7]
+—1tha x

and subtracting some constant terms from the quantity
in the parentheses on the right hand side of Eq. (29).
Layzer pointed out that the right hand side of Eq. (29)
can be expressed in terms of the covariance function of
the mass density (considered as a continuous function).
This is readily carried over to the point particle picture.
With 9, defined in Eq (13), we have

dk
jk—z(l&‘l2 W me,j - expzk (x;—x))
V j¥l
_2n? m;m
> 31
MV i 1x— x| G

y=Yy m//MZ~N"".

Using this result in Eq. (29), and observing that the last
term in parentheses on the right hand side is very
nearly a constant which can be dropped, we arrive at
the desired energy equation,

(K+ U)+i ﬂ(21<+ U)=
GM, G2
- _ 14 2 _
Us—— gdk(|5k| 7).
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In the second equation one imagines replacing the
power spectrum with its ensemble average, which is
assumed to be a function of the magnitude of k, so the
integral over the direction of k is directly evaluated.
Since the power spectrum is the Fourier transform
of the covariance function, the equation for -U can be
rewritten as an integral over the covariance function,
which agrees with Layzer’s result [Layzer, 1963,
Eq. (28), after correction for a missing factor of two in
this equation].

b) Discussion

The time rate of change of the “cosmic kinetic energy”
K is a measure of the rate of growth of irregularities,
and Eq.(32) gives a relation between this quantity
and the power spectrum. Thus we can hope to gain
some understanding of how the long wavelength part of
the spectrum affects the growth of irregularities.

The first step is to obtain the time dependence of K
and U when Eq.(1) is valid. In this case the typical
size I(t) of the systems that separate out from the general
expansion at epoch ¢ varies as loct because the mean
density varies as g,oct™ 2. In one characteristic ex-
pansion time ¢ the growth of irregularities adds to K
(and subtracts from U) an amount ~ G M (¢)/1(t), which
is independent of t. We have then

4K _a . GMO
dt ~ t’ 1)

where « is a constant. The first of Egs. (32) and (33) have
the general solution

I

(33)

K =a10gt/t0 >
34
=3a—2alogt/ty+pt 3.

The constant ¢, is a measure of the epoch at which the
first bound systems in the hierarchy form. The constant
reflects the freedom of choice of zero level for the
potential.

The next step is to compare the evolution of two model
universes. Both commence with the matter distributed
in grains of the same size. In one model the long wave-
length part of the spectrum has n=1 [Eq.(7)]. Then
Eqgs.(1) and (34) follow by either argument. In the
second model the long wavelength part has n>1.
By the bootstrap conjecture bound systems are form-
ing at the same rate in the two models so the
power spectra at short wavelength are the same. Since
we have already established that the long wavelength
part of the spectrum is growing less rapidly in the second
model than in the first (because it started out smaller),
the spectrum in the second model must steepen at
long wavelength, approaching the limit n=4. Thus it is
sufficient to compare two models, with n=1 and
n=4.

To estimate the spectra in the models we note that at
epoch t irregularities on the scale I(t) are going non-
linear. Thus we have

0> ~ M(®)/My,  k=2ma()/I1(?). (35)

By the conjecture the spectra are the same for k 2 k;, so

o2~ 2O (Y
kIl — MV kl s

The power spectra can be used to compare the co-
variance functions £(x) and the potentials U. For the
covariance function, I assume for simplicity that all
particles have the same mass m. Then £ is defined in
terms of the probability 6 P that a particle is found in
the volume element 6V at distance x in a randomly
chosen direction from a randomly chosen particle in V,

n=1,4; k<k;. (36)

5P = % SV(L+E(x). (37)
This function measures the mean density at distance x
from a particle, and it can be considered the analog
of the autocovariance function (lagged product) for a
continuous density function. It is related to the power
spectrum by the equation [Peebles, 1973, Egs. (1), (16)]

Vv <., . sinkx
=5 [ R dk =0

(10> —N71). (39)
For the assumed power spectra ¢ at x~I(t)/a(t) is
smaller for the n=4 model than for the n =1 model
because the long wavelength part of the spectrum
gives a smaller contribution to the integral. As measured
by ¢, the large-scale matter distribution is smoother
for the n=4 model. For the potential energy, Egs. (32)
and (36) give

3 GM(@)
U,—U; ~ 5 0 =ea,
where ¢ ~1 and the constant o is defined in Eq. (33).
The magnitude of the potential U is smaller for the
model with n=4, in agreement with the smaller value
for &(l/a).

Both models are supposed to satisfy Eq. (34), which can
be consistent with Eq. (39) if the ¢, values are in the right
ratio. But this gives

K,—K,=—¢0a/2.

(39

(40)

That is, the velocity dispersion in the model with n=4
is smaller than for n=1 by an amount comparable to
the increment in the dispersion in one expansion time.
The final step is to argue that we really would have
expected K, > K, .

The mass distribution starts out nearly the same in the
two models, close to uniform, and is supposed to end
up in similar-looking lumps. Since the motion from
initial to final state is more gradual in the n=1 model,
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we would expect that the mean square velocity is
smaller. To make this more explicit, let us write

©d

K,= [ “Eo2(w0), 1)
wo H

where v? is the contribution to K by lumps (or proto-

lumps) of mass ~ u. Equation (1) says that mass scales

with time, so we have the scaling relation

v (s 0) = £, (/1) 42)
with the limiting values
L) =a,  x>t/M(),

43
~0, x<t/M(). “3)

The first limit says that the velocity dispersion within
a lump is independent of when the lump formed
[Eq. (33)]. The lower bound on the integral in Eq. (41)
is the mass of the first bound systems to have formed.
When M (¢)> py, Egs.(41)H43) say K varies like
o logt, in agreement with Eq. (34).

The difference of kinetic energies in the models is

0

KO-K @ [ Lrfem-fem. @
Mo H

Since it is assumed that bound systems are similar in
the two models the integral is over the developing
irregularities only. With the variable change t' = M (¢) t/p,
Eq. (44) becomes

K= K= [ G-I 010.0) -} (M@ 0. @)

This is the difference of integrals over the velocity
dispersion at a fixed mass M(f) in the two models.
We can approximate these integrals as

Ctar L (dx(0)\
I= 2‘; Ta(t ) (T) ) (46)

where x(t') measures the motion (in one of the com-
ponents x%) of the matter on the scale M(t) as it evolves
from the uniform to the final (lumpy) state. The minimum

value of I subject to the constraints that x(t) commence
and end up at fixed values, is obtained when

x(t)= A+ Bt*3, 47

where A and B are constants. But this is just the time
variation of x(t') in linear perturbation theory (for
80/0 oc t?/). Since Model 1 is supposed to approximate
linear perturbation theory, while in Model 2 the motion
of developing irregularities is supposed to be slower
at first, more rapid at t'~t¢, it follows that K, > K.
This contradicts Eq. (40).

The argument may be summarized as follows. When the
rate of growth of irregularities is given by Eg. (1), the
peculiar velocity dispersion is given by Eq. (33) and the
Layzer-Irvine equation fixes the potential energy [Eq.
(34)]. Equation (1) follows from the linear perturbation
argument if the spectrum of density irregularities at
long wavelength varies as |5,|> c k. In the bootstrap
conjecture, it is argued that the equation may be valid
independent of the spectrum at long wavelength. But
then it would follow that, if we reduced this function
below |6,]2 oc k, we would reduce the magnitude of the
potential U [Egs.(32), (39)], and hence reduce the
velocity dispersion. This contradicts the argument that
the dispersion is minimum when irregularities develop
according to the linear picture rather than the bootstrap
picture [Eq. (47)].
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