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INTRODUCTION

N this review we shall consider certain funda-
mental probability methods which are finding

applications increasingly in a wide variety of
problems and in fields as different as colloid
chemistry and stellar dynamics. However, a
common characteristic of all these problems is
that interest is focused on a property which is
the result of superposition of a large number of
variables, the values which these variables take
being governed by certain probability laws.
We may cite as illustrations two examples:

(i) The first example is provided by the prob-
lem of random flights. In this problem, a par-
ticle undergoes a sequence of displacements
Ty, T, = -+, T; + -, the magnitude and direction
of each displacement being independent of all
the preceding ones. But the probability that the
displacement r; lies between r; and r,+dr; is
governed by a distribution function 7.(r;) as-
signed a priori. We ask: What is the probability
W(R)dR that after N displacements the co-
ordinates of the particle lie in the interval
R(=[x,y,z]) and R+dR. It is seen that in this
problem the position R of the particle is the
resultant of N vectors, r;, (¢=1, .--, N) the
position and direction of each vector being
governed by the probability distributions 7;(r;).
As we shall see the solution to this problem
provides us with one of the principal weapons of
the theory.!

(ii) We shall take our second illustration from
stellar dynamics. The gravitational force acting
on a star (per unit mass) is given by

F=GEM,‘Y,'/‘T{‘3 (1)

! For historical remarks on this problem of random

flights see the Bibliographical Notes at the end of the
article.

where M, denotes the mass of a typical ‘‘field”
star and r; its position vector relative to the
star under consideration and G the constant of
gravitation. Further in Eq. (1) the summation is
extended over all the neighboring stars. We now
suppose that the distribution of stars in the
neighborhood of a given one is subject to fluctua-
tions and that stars of different masses occur in
the stellar system according to some well
defined empirically established law. However,
the fluctuations in density are assumed to be
subject to the restriction of a constant average
density of n stars per unit volume. We ask:
What is the probability that F lies between
F and F+dF? Again, the force acting on a star
is the resultant of the forces due to all the neigh-
boring stars while the spatial distribution of
these stars and their masses are subject to well-
defined laws of fluctuations.

From the foregoing two examples it is clear
that one of the principal problems under the
circumstances envisaged is the specification of
the distribution function W(®) of a quantity @
(in general a vector in hyper-space) which is the
resultant of a large number of other quantities
having assigned distributions over a range of
values. A second fundamental problem in the
theories we shall consider concerns questions
relating to probability after-effects>—a notion
first introduced by Smoluchowski. We may
broadly describe the nature of these questions
in the following terms: A certain quantity ® is
characterized by a stationary distribution W(®).
We first make an observation of @ at a certain
instant of time t=0 (say) and again repeat our

2 This is the translation of the German word ‘‘Wahr-

scheinlichkeitsnachwirkung’” coined by M. von Smolu-
chowski.
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observation at a later time £. We ask: What can
we say about the possible values of @ which
we may expect to observe at time ¢ when we
already know that ® had a particular value at
t=0? It is clear that if the second observation
were made after a sufficiently long interval of
time, we should not, in general, expect any
correlation with the fact that @ had a particular
value at a very much earlier epoch. On the other
hand as t—0 the values which we would expect
to observe on the second occasion will be strongly
dependent on what we observed on the earlier
occasion.

An example considered by Smoluchowski in
colloid statistics illustrates the nature of the
problem presented in theories of probability
after-effects: Suppose we observe by means of an
ultramicroscope a small well-defined element of
volume of a colloidal solution and count the
number of particles in the element at definite
intervals of time 7, 27, 37, etc., and record them
consecutively. We shall further suppose that the
interval 7 between successive observations is not
large. Then the number which is observed on any
particular occasion will be correlated in a defi-
nite manner with what was observed on the
immediately preceding occasion. This correla-
tion will depend on a variety of physical factors
including the viscosity of the medium: thus it is
clear from general considerations that the more
viscous the surrounding medium the greater
will be the correlation in the numbers counted on
successive occasions. We shall discuss this prob-
lem following Smoluchowski in some detail in
Chapter 111 but pass on now to the consideration
of another example typical of this theory.

We have already indicated that a fundamental
problem in stellar dynamics is the specification
of the distribution function W(F) governing
the probability of occurrence of a force F per
unit mass acting on a star. Suppose that F has a
definite value at a given instant of time. We can
ask: How long a time should elapse on the
average before the force acting on the star can
be expected to have no appreciable correlation
with the fact of its having had a particular value
at the earlier epoch? In other words, what is the
mean life of the state of fluctuation characterized
by F? In a general way it is clear that this mean
life will depend on the state of stellar motions
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in the neighborhood of the star under considera-
tion in contrast to the probability distribution
W(F) which depends only on the average number
of stars per unit volume. The two examples we
have cited are typical of the problems which are
properly in the province of the theory dealing
with probability after-effects.

A physical problem, the complete elucidation
of which requires both the types of theories
outlined in the preceding paragraphs, is pro-
vided by Brownian motion. We shall accordingly
consider certain phases of this theory also.

CHAPTER I
THE PROBLEM OF RANDOM FLIGHTS

The problem of random flights which in its
most general form we have already formulated in
the introduction provides an illustrative example
in reference to which we may develop several of
the principal methods of the theories we wish
to describe. Accordingly, in this chapter, in
addition to providing the general solution of the
problem, we shall also discuss it from several
different points of view.

1. The Simplest One-Dimensional Problem:
The Problem of Random Walk

The principal features of the solution of the
problem of random flights in its most general
form are disclosed and more clearly understood
by considering first the following simplest
version of the problem in one dimension:

A particle suffers displacements along a
straight line in the form of a series of steps of
equal length, each step being taken, either in the
forward, or in backward direction with equal
probability 3. After taking N such steps the
particle could be at any of the points?

—N, —N+1,---,—-1,0, 41, ---, N—1and N.

We ask: What is the probability W(m, N) that
the particle arrives at the point m after suffering
N displacements?

We first remark that in accordance with the
conditions of the problem each individual step
is equally likely to be taken either in the back-

3 These can be regarded as the coordinates along a
straight line if the unit of length be chosen to be equal to
the length of a single step.
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ward or in the forward direction quite inde-
pendently of the direction of all the preceding
ones. Hence, all possible sequences of steps each
taken in a definite direction have the same prob-
ability. In other words, the probability of any
given sequence of N steps is (3)¥. The required
probability W(m, N) is therefore (3)¥ times the
number of distinct sequences of steps which
will lead to the point m after N steps. But in
order to arrive at m among the N steps, some
(N+m)/2 steps should have been taken in the
positive direction and the remaining (N—m)/2
steps in the negative direction. (Notice that m
can be even or odd only according as NV is even
or odd.) The number of such distinct sequences
is clearly

NY/[HN+m) P [3(N—m) ] (2)
Hence
N! /1 N
W(m, N)= 2) .
o 20 [%(N-I-m)]![%(N—m)]!\z) ®)

In terms of the binomial coefficients C,*'s we
can rewrite Eq. (3) in the form

% \Y
W(m, N)= C(N+m)/2(5) ) (4)

in other words we have a Bernoullian distri-
bution. Accordingly, the expectation and the
mean square deviation of (N-+4m)/2 are (see
Appendix I)

%<N+m)“ = %Nv ]
} ()
([(3(N+m)— 3N P)a=1N.
Hence,
(mn=0; (m*w=N. (6)

The root mean square displacement is there-
fore o/N.

We return to formula (3): The case of greatest
interest arises when N is large and m<&N. We
can then simplify our formula for W(m, N) by

TaBLE I. The problem of random walk:
the distribution W(m, N) for N=10.

m From (3) From (12)
0 0.24609 0.252
2 0.20508 0.207
4 0.11715 0.113
6 0.04374 0.042
8 0.00977 0.010
10 0.00098 0.002
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using Stirling’s formula

log n!=(mn+3%) logn—n
+1log 2r4+0(m ) (n—x). (7)

Accordingly when N—« and m<&N we have
log W(m, N)<2(N+1%) log N

—3(N+m+1) log [g(H_%)]

—1(N—m+1) log [g(l_%)]

—%log2r—Nlog2. (8)

But since m<<N we can use the series expansion

I (1 Vel oY, ()
+— )=t—— :
8 N) N 2N? "

Equation (8) now becomes

log W(m, N)=2(N+1) log N—%log 2w — N log 2

LN+ +1)(l N-—1 2+m m2)
-1 m o —lo —_—
2 4 4 N 2N?

m2
)- 1o
2N?

Simplifying the right-hand side of this equation
we obtain

log W(m, N)==—1% log N+log 2
—3 log 2r—m?/2N.

m
—%(N—-m—{—l)(log N —log 2—}\«7—

(11)

In other words, for large N we have the asymp-
totic formula

W(m, N)=(2/wN)}exp (—m?/2N). (12)

A numerical comparison of the two formulae
(3) and (12) is made in Table I for N=10.
We see that even for N=10 the asymptotic
formula gives sufficient accuracy.

Now, when N is large it is convenient to in-
troduce instead of m the net displacement x from
the starting point as the variable:

x=ml (13)

where ! is the length of a step. Further, if we
consider intervals Ax along the straight line
which are large compared with the length of a
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step we can ask the probability W(x)Ax that the
particle is likely to be in the interval x, x+Ax
after N displacements. We clearly have

W(x, N)Ax=W(m, N)(Ax/2l), (14)

since m can take only even or odd values de-
pending on whether NV is even or odd. Combining
Egs. (12), (13), and (14) we obtain

W(x, N)=

exp (—«2%/2NE). (15)

(2w N2}

Suppose now that the particle suffers # displace-
ments per unit time. Then the probability
W (x, ) Ax that the particle will find itself between
x and x+Ax after a time ¢ is given by

W(x, H)Ax= exp (—x%/4Dt)Ax, (16)
2(wDt)}
where we have written
D=1ini 17

We shall see in §4 that the solution to the general
problem of random flights has precisely this
form.

2. Random Walk with Reflecting
and Absorbing Barriers

In this section we shall continue the discussion
of the problem of random walk in one dimension
but with certain restrictions on the motion of
the particle introduced by the presence of
reflecting or absorbing walls. We shall first
consider the influence of a reflecting barrier.

(a) A Reflecting Barrier at m=m;

Without loss of generality we can suppose
that m;>0. Then, the interposition of the
reflecting barrier at m, has simply the effect that
whenever the particle arrives at m; it has a
probability unity of retracing its step to m;—1
when it takes the next step. We now ask the
probability W(m, N; m;) that the particle will
arrive at m(< m;) after N steps.

For the discussion of this problem it is con-
venient to trace the course of the particle in an
(m, N)-plane as in Fig. 1. In this diagram, the
displacement of a particle by a step means that
the representative point moves upward by
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one unit while at the same time it suffers a
lateral displacement also by one unit either in
the positive or in the negative direction.

In the absence of a reflecting wall at m =m; the
probability that the particle arrives at m after
N steps is of course given by Eq. (3). But the
presence of the reflecting wall requires W(m, N)
according to (3) to be modified to take account
of the fact that a path reaching m after n re-
flections must be counted 2" times since at
each reflection it has a probability unity of
retracing its step. It is now seen that we can
take account of the relevant factors by adding to
W(m, N) the probability W(2m,—m, N) of
arriving at the ‘““smage”’ point (2m;—m) after N
steps (also in the absence of the reflecting wall),
ie.,

W(m, N; m)=W(m, N)+W(2m,—m, N).

We can verify the truth of this assertion in the
following manner: Consider first a path like
OED which has suffered just one reflection at m;.
By reflecting this path about the vertical line
through m, we obtain a trajectory leading to the
image point (2m,—m) and conversely, for every
trajectory leading to the image point, having
crossed the line through m, once, there is exactly
one which leads to m after a single reflection.
Thus, instead of counting twice each trajectory
reflected once, we can add a uniquely defined
trajectory leading to (2m;—m). Consider next a

(18)
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trajectory like OABCD which leads to m after
two reflections. A trajectory like this should be
counted four times. But there are two trajectories
(OAB'CD and OABCD’) leading to the image
point and a third (OAB’CD) which we should
exclude on account of the barrier. These three
additional trajectories together with OABCD
give exactly four trajectories leading either to m
or its image 2m,—m in the absence of the
reflecting barrier. In this manner the arguments
can be extended to prove the general validity
of (18).

If we pass to the limit of large N Eq. (18) be-
comes [cf. Eq. (12)]

2 E
W(m, N;m;)= (—;V—) {exp (—m?/2N)

g

+exp [—(2mi—m)2/2N]}. (19)

Again, if as in §1 we use the net displacement
x=ml as the variable and consider the prob-
ability W(x, ¢; x1)Ax that the particle is between
x and x+Ax, (Ax>I) after a time ¢ (during
which time it has taken nt steps) in the presence
of a reflecting barrier at x;=m,l, we have

W(x, t; x1) =

2D} {exp (—x%/4Dt)

+exp [ — (24, —x)%/4Dt]}.

We may note here for future reference that
according to Eq. (20)

(6W/6x):=x1_=_0.

(20)

(21)
() Absorbing Wall at m=m,

We shall now consider the case when there
is a perfectly absorbing barrier at m=m,. The
interposition of the perfect absorber at 7; means
that whenever the particle arrives at m; it at
once becomes incapable of suffering further dis-
placements.* There are two questions which we
should like to answer under these circumstances.
The first is the analog of the problems we have
considered so far, namely the probability that
the particle arrives at m(<m,;) after taking N
steps. The second question which is character-
istic of the present problem concerns the average

¢ This problem has important applications to other
physical problems.
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rate at which the particle will deposit itself on
the absorbing screen.

Considering first the probability W(m, N; m,),
it is clear that in counting the number of distinct
sequences of steps which lead to m we should be
careful to exclude all sequences which include
even a single arrival to m;. In other words, if we
first count all possible sequences which lead to
m in the absence of the absorbing screen we
should then exclude a certain number of ‘‘for-
bidden”’ sequences. It is evident, on the other
hand, that every such forbidden sequence
uniquely defines another sequence leading to the
image (2m;—m) of m on the line m=m, in the
(m, N)-plane (see Fig. 1) and conversely. For,
by reflecting about the line m=m, the part of a
forbidden trajectory above its last point of con-
tact with the line m=m, before arriving at m
we are led to a trajectory leading to the image
point, and conversely for every trajectory
leading to 2m;—m we necessarily obtain by
reflection a forbidden trajectory leading to m
(since any trajectory leading to 2m;—m must
necessarily cross the line m =m,). Hence,

W(m, N;mi)=W(m, N)—W(Q2m,—m, N). (22)
For large N we have
W(m, N; my)=(2/xN)}{exp (—m?/2N)

—exp [—(2mi—m)2/2N7]}.  (23)

Similarly, analogous to Eq. (21) we now have

Wi(x, t; x1)=

2o} {exp (—x?/4Dt)

—exp [—(2x1—x)%/4Dt]}. (24)

We may further note that according to this
equation
W(x1, t; x1) =0. (25)

Turning next to our second question concern-
ing the probable rate at which the particle
deposits itself on the absorbing screen, we may
first formulate the problem more specifically.
What we wish to know is simply the probability
a(my, N) that after taking N steps the particle
will arrive at m, without ever having touched or
crossed the line m=m, at any earlier step.

First of all it is clear that N should have to be
even or odd depending on whether m,; is even
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or odd. We shall suppose that this is the case.
Suppose now that there is no absorbing screen.
Then the arrival of the particle at m, after N
steps implies that its position after (N—1)
steps must have been either (m;—1) or (m:+1).
(See Fig. 2.) But every trajectory which arrives
at (mq, N) from (mi+1, N—1) is a forbidden one
in the presence of the absorbing screen since such
a trajectory must necessarily have crossed the
line m=m,. It does not however follow that all
trajectories arriving at (m;, N) from (m;—1,
N —1) are permitted ones: For, a certain number
of these trajectories will have touched or crossed
the line m=m, earlier than its last step. The
number of such trajectories arriving at (m;—1,
N —1) but having an earlier contact with, or a
crossing of, the line m=m, is equal to those
arriving at (m;+1, N—1). The argument is
simply that by reflection about the line m =m, we
can uniquely derive from a trajectory leading to
(m1+1, N—1) another leading to (m;—1, N—1)
which has a forbidden character, and conversely.
Thus, the number of permitted ways of arriving
at m, for the first time after N steps is equal to all
the possible ways of arriving at m; after N steps
in the absence of the absorbing wall minus
twice the number of ways of arriving at (m;+1,
N—1) again in the absence of the absorbing
screen: i.e.,

N!
[H(N—m) (N +mp)]!
) (N—1)!
[3(N+m) J[H(N—m;1—2)]!
= 1— , (26
WV-—m) AN +m) I\ N ) 20
miy N!

N (N =m) N +m) ]!
The required probability a(mi, N) is therefore
given by

a(ml, N) =-n§W(m1, N) (27)

For the limiting case of large N we have

mi

2N}
a(my, N)Z.J—V—(wTV) exp (—mi2/2N). (28)

IN
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If we further write
x1=mil; N=unt; D=3inl, (29)

where [ is the length of each step and # the num-
ber of displacements (assumed constant) which
the particle suffers in unit time, then

X1
a(xl, t) =
nt (wDt)}

exp (—x2/4D¢t).  (30)

Finally, if we ask the probability q(xi, £)At that
the particle arrives at x; during ¢ and ¢+A¢ for
the first time, then

q(xlr t)At=%a(x1, t)nAtv (31)

since (30) is the number which arrive at x; in the
time taken to traverse two steps. Thus,

X1 1

(xvt)="_ €
e = D)

xp (—x:2/4Dt). (32)

We can interpret Eq. (32) as giving the fraction
of a large number of particles initially at x=0
and which are deposited on the absorbing screen
per unit time, at time £.

We readily verify that g(xi, ) as defined by
Eq. (32) satisfies the relation

q(xl, t) = —D(aW/ax)z=;u1, (33)

with W defined as in Eq. (24). This equation has
an important physical interpretation to which
we shall draw attention in §5.
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3. The General Problem of Random Flights: Markoff’s Method

In the general problem of random flights, the position R of the particle after IV displacements is

given by
N
R= Z i (34)
i=1
where the 7i's (4=1, - - -, N) denote the different displacements. Further, the probability that the
ith displacement lies between r; and r;+4-dr; is given by
'r,-(x,~, Viy z;)dx,-dyidz@= T,'dT,' (’l,= 1, ey, N) (35)

We require the probability Wx(R)dR that the position of the particle after N displacements lies in
the interval R, R+dR. In this general form the problem can be solved by using a method originally
devised by A. A. Markoff. Now, Markoff’s method is of such extreme generality that it actually
enables us to solve the first of the two fundamental problems outlined in the introductory section.
We shall accordingly describe Markoff’s method in a form in which it can readily be applied to other
problems besides that of random flights.

Let
¢j=(¢ilr ¢j2’ "':¢jn) (j=11 "',N) (36)
be N, n-dimensional vectors, the components of each of these vectors being functions of s coordinates:
oF=0fqt -, q) (k=1,---,n;j=1,---, N). (37)
The probability that the g;'s occur in the range
g ¢i*+dgi's ¢ g2 +dgis - gt 9 +Hdgy, (=1, -+, N) (38)
is given by
7i(gi'y * s ¢i")dgst - -dgf =75(¢;)dg;. (39)
Further, let
N
(4, @2, -, ) =B = > @;. (40)

i=1

The problem is: What is the probability that
@y — 30 < P < Po+3dPo (41)

where ®, is some preassigned value for ®.
If we denote the required probability by

WN(@o)dq)o‘ . 'dq30"= W(‘l’o)d(l)o, (42)
we clearly have
N
Wy@gdwo= [ [ I trig)da,), (43)
=1
where the integration is effected over only those parts of the Ns-dimensional configuration space
(g1}, - - -, gn*) in which the inequalities (41) are satisfied.
We shall now introduce a factor A(q, - - -, g~) having the following properties:
A(qy, - -+, gv)=1 whenever @o—3d® < P Po+3dd,,

44
=0 otherwise. (44)

Then,
Wy (®0)d®o= f . f Ags -+ a) T rig)dgs) (45)
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where, in contrast to (43), the integration is now extended over all the accessible regions of the con-
figuration space. The introduction of the factor A under the integral sign in Eq. (45) in this manner
appears at first sight as a very formal device to extend the range of integration over the entire con-
figuration space. But the essence of Markoft’s method is that an explicit expression for this factor can
be given.

Consider the integrals

1 +° sin apk .
5,,=~f exp (tpryi)dpr (=1, .-, n). (46)

Y Pk

The integral defining & is the well-known discontinuous integral of Dirichlet and has the property

8r=1 whenever —ar<vi<ai,
. (47)
=0 otherwise.
Now, let
N
=3ddt; vi=2 ¢f—BF (k=1, -, n). (48)

=1

According to Eq. (47)
N
r=1 whenever @ —31d®} <Y ¢/ <PfF+1ddo*,

i=1

(49)

[ —

=0 otherwise.
Consequently

A=TT & (50)

has the required properties (44).
Substituting for A from Egs. (46) and (50) in Eq. (45), we obtain

WrGudd=— f <9>f J (q)f | riadda; {ﬁinm}

n N n ]
Xexp ! [Z 2 difpr— k;l ‘bokpk] jdpl’ <edpnp  (S1)

k=1 j=1

o f | exp (—ig- @) Av(e)ds

where we have written

N
An(e) =11 f - f dgj - dg;* exp (e~ 8975 (@ - > 45). (52)

7=1

The case of greatest interest is when all the functions 7; (of the respective ¢;'s) are identical. Equa-
tion (52) then becomes

AN(9)=[ f exp (i9'¢)7(¢1)dq]N- (53)

According to Eq. (51), Ax(g) is the n-dimensional Fourier-transform of the probability function
W(®,). And Markoff’s procedure illustrates a very general principle that it is the Fourier transform
of the probability function, rather than the function itself, that has a more direct relation to the
physical situations.
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For N— =, Ax(p) generally tends to the form [see §4 Eq. (91)]
Limit Ay(p) =exp [ —C(g) ]- (54)

Now

4. The Solution to the General Problem of Random Flights

We shall now apply Markoff’s method to the problem of random flights. According to Egs. (34),
(51), and (52), the probability Wx(R)dR that the position R of the particle will be found in the
interval (R, R4+dR) after N displacements is given by

1 +o0
WaB)= [ exp (—ig-RyAx(ede (55)
™ —
where
N to
Ax (o) =Hl 7i(r;) exp (ip-1;)dr;. (56)
=1J_g,

In Eq. (55), 74(r;) governs the probability of occurrence of a displacement r; on the jth occasion.
The explicit form which Wx(R) takes will naturally depend on the assumptions made concerning the
7;(r;)’s. We shall now consider several cases of interest.

(a) A Gaussian Distribution of the Displacements 7 ;

A case of special interest arises when

T;=
(2ml2/3)}

exp (—3]|r,]%/212), (57)

where 1,2 denotes the mean square displacement to be expected on the jth occasion. While /2 may differ
from one displacement to another we assume that all the displacements occur in random directions.
For 7; of the form (57), our expression for Ax(p) becomes

4o
N 1
Av@ =TT ———— [ [ [ exp Litorebpusstpi) =3(s+37-+57)/202 10y
=1 (2xl2/3)1
o (58)
N N
= I_I1 exp [ —(pr*+po"+p5)l/6]=exp [~ ([o]|* X 1,5)/6].
Let (I*)y stand for
1 ~
l2 A= lj2.
G Y ,-gl (59)
Equation (58) becomes
An(p) =exp [— N{*w|0|?/6]. (60)

Substituting this expression for Ax(e) in Eq. (55), we obtain
4
1
WaB)=— [ [ [ exp [—iCouX to¥ +0s2) = N@lort-os+o5) /6 Mpidpados. (61
w
The integrations in (61) are readily performed and we find

Wx(R) exp [—3|R|¥/2N{n]. (62)

T 2 N()w/3)}
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This is an exact solution valid for any value of N. That an exact solution can be found for a Gaussian
distribution of the different displacements is simply a consequence of the ‘‘addition theorem' which
these functions satisfy.

(b) Each Displacement of a Constant Length But in Random Directions

Let the displacement on the jth occasion be of length /;in a random direction. Under these circum-
stances, we can define the distribution functions 7; by

1
16(|rj’2—li2)1 (]=1v »N) (63)

wej*

T;i=

where & stands for Dirac’s § function.
Accordingly, our expression for Ay (g) becomes

+oo
An(@)=TI f exp (iger3)3(r 2 —13)dr;, (64)

=147} j —0

or, using polar coordinates with the z axis in the direction of ¢

AN(O) H

=1 41rl 3

f f f exp [4|e|7jcos 9]8(r2—13)r sin ddr;dddw. (65)

The integrations over the polar and the azimuthal angles ¢ and w are readily effected :

An(o) = Y f f exp (i|o|7; cos #)r28(r2—17) sin 9dddr;
]—1
N 0
-1I f sin (lolr)rsd(r—13)dr; L (66)
=110l
_xsin ([e[1)
j=1 I, J
Thus, 1 IPI j
1 pte N sin (|g|l;)
Wy(R) =— f exp (—igR) II " g, (67)
8wt J_ =1 '9“:’
Again, choosing polar coordinates but with the z axis pointing this time in the direction of R,
we have
+1 ([9' J)L .
WeB)=— ff f exp (~ilel [RID| IT° lo|*dudid o] . (68)
=1 19| i
The integrations over w and ¢ are readily performed and we obtain
® n (|e|;)
Wi(R) = ) sm(lollR!) ———’lmdlol (69)
27| R| Yy lell; )

which represents the formal solution to the problem. In this form, the solution for the problem of
random flights is due to Rayleigh.5

5 Lord Rayleigh, Collected Papers, Vol. 6, p. 604. We may, however, draw attention to the fact that our formulation of
the general problem of random flights is w1der in its scope than Raylelgh s. Rayleigh’s formulation of the problem corre-
sponds to our special case (63).
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The case of greatest interest arises when all the /;'s are equal. We shall assume that this is the case
in the rest of our discussion:

l;=l=constant (j=1, ---, N). (70)
Equation (69) becomes

@

n (le|?)
2| R| J, L

[ leld|el. (71)

WN(R)=2 sin (Je| |R I){

lol!

() N finite—We shall illustrate (following Rayleigh) the method of evaluating the integral on the
right-hand side of Eq. (71) for finite values of N by considering the cases N=3 and 4.
When N=3, Eq. (71) becomes

Wi(R) = f Sm(lolll?l)sm‘*(loll)ﬂ (72)

27| R|P le]?

But
sin (ol |R]) sin® (|e|)=3{3 cos [(|R| =1)|e|]1—3 cos [(|R|+!)|e|]—cos [(|R|—3])le|]

+cos [(|R[+3)el1}. (73)

Further
[ teos CARI=D1el - cos[(ue|+l>|9|3}I'—"i|
0 44
R — d L
_zf{ (I [+ el e (|R| l)lol]} lol (74)
0 2 2 J|9l2
=3r(|R|+I—||R|—=1]). J

We have a similar formula for the integral involving the other pair of cosines in Eq. (73). Combining
these results we obtain

1
Wa(R)=W {2|R| =3[ |R|—I|+||R| =3[}, (75)
or, more explicitly
W3(R)=—1— (0<|R| <),

i

- (3I-|R|) (<|R|<3I), r 9
1673 | R|

=0 QBI<|R| < ).

We shall consider next the case N=4. According to Eq. (71) we have

1 pedlel
WiR)= o [ sin (el 1R sin (lelb. (17)

From this equation we derive
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_2 [IR|Wi(R)]=— fwd"" sin (o] |R|) sin* (|g|2) ]
d|R|? ! 2wty ol ¢ o

= : fwdlpl{sinE(IRI+4I)|9I]+sin[(iR|—4l)|elj
32rJdy ol - (78)

—4sin [(|R[+2))|e|]—4sin [(|R| —2))|e|J+6sin (| R||e])}

1
=—(1+1—4F446)=
647t 647l4

(3+£1F4),

where the two alternatives in the last two steps of Eq. (78) depend, respectively, on the signs of
(|R| —41) and (|R| —2I). Thus

a2

647l R\ W(R)]=—6 (0<|R|<2]),

it L RIWA(R)] (0<|R| <2)
(79)

=42 (2A<|R| <4,

=0 (4l<|R| < ).

We can integrate the foregoing equation working backwards from large values of |R| where all
derivatives must vanish. We find

d
64xl*—[|R|Wi(R)]=2(|R| —4l) (2I<|R|<4d),
d|R| f(80)

=—6|R|+8 (0<|R|<2), J

where we have used the continuity of the quantity on the left-hand side of this equation at | R| =2I.
Integrating Eq. (80) once again we similarly obtain

64714 | R| Wi(R)= | R|*—8I| R| + 1612

_ (@i R (21< |R| <4, (81)
and
64xl'| R| Wi(R)= — 3| R|2+8I|R| (2> | R| >0). (82)
Thus, finally
W4(R)=M(SIIRI—3IR|2) (O<|R[ <2,
(W |R|} (21 < |R| <4l), ' (89
64xl4| R|
=0 (41<|R| < ).

In like manner it is possible, in principle, to evaluate the integral for Wx(R) for any finite value of
N. But the calculations become very tedious. We may however note the following solution obtained
by Rayleigh for the case N=6.
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1
We(R)=——(16B3|R| — 41| R|*+(5/6) | R|* 0<R<2
°()2s,r|R|ze( |R| —4l|R|*+(5/6)| R|*) ( )
=————(—204+561| R| —302| R|2+6l|R|*—(5/12) |R|Y) (2I<|R|<4l
IR IRI =300 |RI*+ IR~ (S/1DIRI) @<IRI<a) |
=———(108/*—72PB|R| +182|R|2—2]|R|*4+(1/12) |R|Y) (4I<|R|<6l)
28| R| 16
=0 (6/<|R| < )./

(77) N&1.—By far the most interesting case is when N is very large. Under these circumstances
sin (|e|D)\¥
Limit (——l—) =Limit (1—21|g|2%24-- )V,
lol? Nosoo f (85)
=exp (—N|e|%*/6). J

Now

Accordingly, from Eq. (69) we conclude that for large values of N

W(R)=

27| R| f exp (= NE|e|*/6)|o] sin (IR[[eDdlel, (86)
0

where we have written W(R) for Wy(R), N— <. Evaluating the integral on the right-hand side of
Eq. (86), we find

W(R) exp (—3|R|2/2NP). (87)

T (2rNE/3)

We notice the formal similarity of Egs. (62) and (87). However, on our present assumptions, Eq. (87)
is valid only for large values of N.

(c) A Spherical Distribution of the Displacements. N> 1

We shall assume that

Tj(rf)=‘r({rf|2) (_7=1r ""1N)' (88)
Then
+o N

Ax(o) =|:f exp (79 -r)r(r2)dr] . (89)

By using polar coordinates, the integral inside the square brackets in Eq. (89) becomes

+o & A+l 27 ® gin ([el,)
f exp (ig+)r(r)dr= f f f exp (i| o] rt)rr (r*)dwdtdr =4 f e 00
—0 0 Y1 vy 0 elr

Hence
. = sin (|e[7) N
Limit Ay (p) =Limit [41r f ————rﬂr(r*’)dr] '
Nowx Nox 0 | 4 ! r

i ! oD
= Limit [4wf (1—3%|o|22+ - -)r2r(r2)dr] ,
0

Now

=exp (= N|e|Xrn/5)
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where (r?)y, is the mean square displacement to be expected on any occasion. Substituting the fore-
going result in Eq. (55) we obtain

1 pte
WR)=— f exp (—ig+R— N |p|Xr2)n/6)de, (92)

or, [cf. Eq. (62)] -
W(R) =—m——— —3|R|2/2N{r*),). 3
(R) 2N /3)§e><p( |R|2/2N(r*n) (93)

It is seen that Eq. (93) includes the result obtained earlier in Section (b) under casc (ii) [Eq. (87)]
as a special case.

(d) The Solution to the General Problem of Random Flights for N>>1

We shall now obtain the general expression for Wy (R) for large values of N with no special as-
sumptions concerning the distribution of the different displacements except that all the 7,’s represent

the same function. Accordingly, we have to examine quite generally the behavior for N—« of
An(p) defined by [cf. Eq. (53)]

N

+
A~(9)=[ f exp (i9°r)f(r)dr] . (94)

—00

Let pi1, p2, p3 denote the components of p in some fixed system of coordinates. Then

+0 At At N
A~<9)=[ [ exp[i<plx+p2y+p3z)]r<x,y,z)dxdydz].

40 Lt L+
=[f f f {1+1:(P1x+p2y+paz)_%(p12x2+p22y2+p3223+2p1p2xy

. (95)
+2p2p5y2+2p3p1zx) + - - - 7(x, ¥, z)dxdydz] ,
=[1+i(px(x)+px(y) +03(2)) — 5(01Xx?) +p2X(y") + psX(2") + 2p1p2(xy)
+2p205(y2) +2psp1(3x)) + - - - ]V /
where (x), - - -, (zx) denote the various first and second moments of the function 7(x, y, z). Hence
for N— « we have
An (o) =exp [iN(pi(x)+pxy) +ps(2) —3NQ(e) ] (96)
where Q(p) stands for the homogeneous quadratic form
Q(e) = (x)ps2+(¥)pa*+(8%)ps* + 2(xy)p102+ 2(y2)p203+ 2(2x) p3p1. 97

Substituting for Ax(p) from Eq. (96) in Eq. (55) we obtain for the probability distribution for
large values of IV the expression:

1 o atw t
W(R)=8_1r—3-[w j:m _[m exp [—%NQ(G)—i{m(X—N<x))+pz(Y—N(y>)+P3(Z—N(2))}]dmdpzd€938)

To evaluate this integral we first rotate our coordinate system to bring the quadratic form Q(p)
to its diagonal form.

Qo) = (&0 +(1%)py* +($H0s™. (99)
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In Eq. (99) (&), (n» and ({?) are the eigenvalues of the symmetric matrix formed by the second
moments:

(a?) (xy) (xz)

(yx) o (y2) (100)
(2x) (2y) (2%

Further, the three eigenvectors of the matrix (100) form an orthogonal system which we have
denoted by (%, », ¢). Let

R=(%, H, 7) (101)

in this system of coordinates. Equation (98) now reduces to
1 +0 +x +w

WR=— [ [ [ e [N @+ o000
™ —0 Y Y-

—1{pe(E— N(£) +py(H—N(n)) +p:(Z— N({))} Jdpsdp.dp;.  (102)

The integrations over pg, p, and p; are now readily performed, and we find
o [ (E—DN(g)*  (H—N(n))* (Z—N(s*)V]
= exp | — - - .
(BN (EN ) (s))} 2N(E) 2N(n®) IN(?)

According to Eq. (103), the probability distribution W(R) of the position R of the particle after
suffering a large number of displacements (governed by a basic distribution function r[x, y, z])
is an ellipsoidal distribution centered at (N(£), N{(n), N(¢))—in other words the particle suffers an
average systematic net displacement of amount (N(£), N(n), N(¢)) and superposed on this a general
random distribution.

The principal axes of this ellipsoidal distribution are along the principal directions of the moment-
ellipsoid defined by (100) and the mean square net displacements about (N(£), N(»), N{¢)) along the
three principal directions are

(E=NEMIW=NE); (H=Nm)Hw=N(); (Z—NE)Hm=N{(i?. (104)

5. The Passage to a Differential Equation: The Reduction of the Problem of Random
Flights for Large N to a Boundary Value Problem

W(R) (103)

In the preceding sections we have obtained the solution to the problem of random flights under
various conditions. Though in each case the problem was first formulated and solved for a finite
number of displacements, the greatest interest is attached to the limiting form of the solutions for
large values of N. And, for large values of N the solutions invariably take very simple forms. Thus,
according to Eq. (93) a particle starting from the origin and suffering # displacements per unit time,
each displacement r being governed by a probability distribution =(|r|2), will find itself in the ele-
ment of volume defined by R and R+dR after a time ¢ with the probability

1
R et/ 3)1 —3|R|? ut)dR. 105
() (27m<72>mt/3)%eXp( 3|R|*/2n(r*mt) (105)

In the foregoing equation (7?)» denotes the mean square displacement that is to be expected on any
given occasion. If we put

D =n{r*)n/6 (106)
Eq. (105) takes the form [cf. Eq. (16)]
1
W(R)dR= — |R|%/4Dt)dR. 107
(RYIR =~ exp (= |RI*/4D) (107)
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In view of the simplicity of this and the other solutions, the question now arises whether we can-
not obtain the asymptotic distributions directly, without passing to the limit of large N, in each
case, individually. This problem is of particular importance when restrictions on the motion of the
particle in the form of reflecting and absorbing barriers are introduced. Our discussion in §2 of the
simple problem of random walk in one dimension with such restrictions already indicates how very
complicated the method of enumeration must become under even somewhat more general conditions
than those contemplated in §2. The fact, however, that for the solutions obtained in §2, W vanishes on
an absorbing wall [Eq. (25)] while grad W vanishes on a reflecting wall [Eq. (21)] suggests that the
solutions perhaps correspond to solving a partial differential equation with appropriate boundary
conditions. We shall now show how this passage to a differential equation and a boundary value
problem is to be achieved.

First, we shall introduce a somewhat different language from that we have used so far in discussing
the problem of random flights. Up to the present we have spoken of a single particle suffering dis-
placements according to a given probability law, and asking for the probability of finding this
particle in some given element of volume at a later time. It is clear that we can instead imagine a
very large number of particles starting under the same initial conditions and undergoing the dis-
placements without any mutual interference, and ask the fraction of the original number which will
be found in a given element of volume at a later time. On this picture, the interpretation of the
quantity on the right-hand side of Eq. (106) is that it represents the fraction of a large number of
particles which will be found between R and R+dR at time ¢ if all the particles started from R=0
at t=0. However, the two methods of interpretation are fully equivalent and we shall adopt the
language of whichever of the two happens to be more convenient.

We pass on to considerations which lead to a differential equation for W(R, ¢):

Let At denote an interval of time long enough for a particle to suffer a large number of displace-
ments but still short enough for the net mean square increment (| AR|?)y in R to be small. Under
these circumstances, the probability that a particle suffers a net displacement AR in time At is given by

1
R; At)=————exp (— |AR|?/4D
V(AR; AY) ek p (— |AR|2/4DAt) (108)

and is independent of R. With At chosen in this manner, we seek to derive the probability distribution
W(R, t+At) at time {4 At from the distribution W(R, t) at the earlier time ¢. In view of (108) and
its independence of R we have the integral equation

+0
W(R, t+A) = f W(R—AR, {)¥(AR; A)d(AR). (109)

Since (| AR|2), is assumed to be small we can expand W(R—AR, {) under the integral sign in (109)
in a Taylor series and integrate term by term. We find

1 to ato ato ow ow
W(R, H—At)z———f f f exp (— |AR|2/ADAD W(R, f) —AX — — AV —
(4xDA} J_, J_ J_ oxX Y
aw 1 P W SIwW 4 92
-—AZ——~+-[(AX)2 +(AY)——+ (AZ)——+2AXAY
oz 2 X2 Y2 YA 0Xa3Y
> (110)
IwW 0?2
L2AVAZ—— 4 2AZAX ]+ A dAX)dAY)(AZ)
oYoz X
72w W 3w
—WR, t>+DAt( + 274 )+O(EAt]2).
X2 9Y? o922
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Accordingly, *W W oW
+—t
X  oYr 9z

w
a—AH—O([At]?) = D( )AH—O([A[P). (111)
at

Passing now to the limit of At=0 we obtain

oW EW W EW
—= ( ) (112)

= + +
at X2 ayr oz
which is the required differential equation. And, it is seen that W(R, ¢) defined according to Eq. (107)
is indeed the fundamental solution of this differential equation.

Equation (112) is the standard form of the equation of diffusion or of heat conduction. This analogy
that exists between our differential Eq. (112) to the equation of diffusion provides a new interpreta-
tion of the problem of random flights in terms of a diffusion coefficient D.

It is well known that in the macroscopic theory of diffusion if W(R, ) denotes the concentration of
the diffusing substance at R and at time ¢, then the amount crossing an area Ac in time At is given by

—D(15,grad W)AcAt, (113)

where 14, is a unit vector normal to the element of area Ag. The diffusion equation is an elementary
consequence of this fact. Consequently, we may describe the motion of a large number of particles
describing random flights without mutual interference as a process of diffusion with the diffusion
coefficient

D =n{r*)u/6. (114)

With this visualization of the problem, the boundary conditions

W =0 on an element of surface which is a perfect absorber (115)
and
grad W=0 normal to an element surface which is a perfect reflector (116)

become intelligible. Further, according to Eq. (113), the rate at which particles appear on an absorb-
ing screen per unit area, and per unit time, is given by

—D(1egrad W)w—o (117)

where 1 is a unit vector normal to the absorbing surface. This is in agreement with Eq. (33).

We shall now derive the differential equation for the problem of random flights in its general form
considered in §4, subsection (d). This problem differs from the one we have just considered in that
the probability distribution 7(r) governing the individual displacements r is now a function with no
special symmetry properties. Accordingly, the first moments of 7 cannot be assumed to vanish;
further, the second moments define a general symmetric tensor of the second rank. Under these
circumstances, the probability of finding the particle between R and R+dR after it has suffered a
large number of displacements is given by [cf. Eq. (103)]

1 [_<X—N<x>>2_<Y—N<y>>2_<Z—N<z>>2]d

W(R)dAR = exp
(87 N¥x®)(y* ) (z*)} 2N(x?) 2N(y*) 2N(z%)

(118)

In writing the probability distribution W(R) in this form we have supposed that the coordinate
system has been so chosen that the X, ¥, and Z directions are along the principal axes of the moment
ellipsoid.

Assuming that, on the average, the particle suffers n displacements per unit time we can rewrite
our expression for W(R) more conveniently in the form
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(X+Bit)2 (Y+Bat)? (Z4Bst)?
W(R)=—————-——exp[— — — ] (119)
8(‘"’0’(D1D21)3)i 4D1[ 4D2t 4Dat
where we have written
Dy=3n(x?); Dy=3n(y?); Dsz=3n(s?), |
J} (120)

Bi=—nlx); Ba=—n(y); PBz=—n2).

To make the passage to a differential equation, we consider, as before, an interval At which iS
long enough for the particle to suffer a large number of individual displacements but short enough for
the mean square increment (| AR|2?),, to be small. The probability that the particle suffers an incre-
ment AR in the interval At is therefore governed by the distribution function

1 (AX +8:1A1)?7 (AY+B2A0) (AZ+BsAt)?
V(AR; At) = exp[~— - - ] (121)
S(TAl)i(DlpzDg)% 4D1Af 4D«_>Af 4D3At
Hence, analogous to Egs. (109) and (110) we now have
ow e
W(R, t+At) = W(R, t)+--AH—0([At]2 f W(R—AR, t)Y(AR; At)d(AR)
f f f [ (AX+8:1A0)7  (AY+B:41)*
= exp| — —
8(7rAt)i(D1D2D3)* —w 4D1At 4D2At
(AZ+ B3At)? oW ow ow
———] W(R, t) —.(AX~—+AY—+AZ—) (122)
4D3At X Ay oz
1 3w R4 W *W 92
+-{ AX? +AY? +AZ? +2AXAY- +2AYAZ
2 aX? ay? VA 1. 4:0'% Yoz
3w )
+2AZAX )— - d(AX)d(AY)d(AZ).
024X J
Since for the distribution function (121)
d (AX>AV= —ﬁlAt; <AY>AV= —BgAt; (AZ>AV= _B3Al, (123)
an
(AX2>AV = 2D1At+ﬂ12At2; <A YAZ)AV = ﬁ2ﬁ3A52,
<A Y2>Av = 2D2At+ 622At2 ’ <AZAX>AV 63H1At2 t (124)

(AZ%w=2DsAt4Bs2A8; (AXAY)w = B18:A8, J
we conclude from Eq. (122) that
W *w >*w

oW
—Ai40([At P — — — ) At +D, D, At4+0([ At P). 125
0o = (st b8 Yok (D De 4D YarkOQAT). (129

Passing now to the limit A/=0 we obtain

1124 oW aw oW *W 1w W
—=Bfr—+Br—+Bs—+D: +D, +D; 8 (126)
ot X Y oz & aY? YA

which is the required differential equation. According to this equation we can describe the phe-
nomenon under discussion as a general process of diffusion in which the number of particles crossing
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elements of area normal to the X, ¥, and Z direction per unit area and per unit time are given,

respectively, by

ow )/ 4 24
—BW—=Dy—; —BW—Dy—; —BsW—Dz—. (127)
0X Y 0Z

For the purposes of solving the differential Eq. (126) it is convenient to introduce a change in the

independent variable. Let
Bi? B2? B3
W=Uexp[—-——(X xo)- vy -z P P —-———t] 128
2D " ap, ’ ZD( 2 4D, 4D, 4D, (128)

We verify that Eq. (126) now reduces to
aU a?U U U

—=D; +D, +Ds . (129)
a¢ aX? ay? YA

The fundamental solution of this differential equation is

Constant (X—=X,)? (Y=Y (Z—2Zy)?
_ Lonstant [~ - - ] (130)
(D1D:D3t)} 4Dyt 4Dt 4Dt
Returning to the variable W, we have
Constant (X—Xo+61t)2 (Y— Yo+th)2 (Z—Zo+ﬂ3t)2
= exp[— - — ] (131)
(D1D:D3t%)} 4Dt 4Dt 4Dt

In other words, the distribution (119) does indeed represent the fundamental solution of the differ-
ential Eq. (126).

CHAPTER II
THE THEORY OF THE BROWNIAN MOTION

1. Introductory Remarks. Langevin’s Equation

In the studies on Brownian motion we are principally concerned with the perpetual irregular
motions exhibited by small grains or particles of colloidal size immersed in a fluid. As is now well
known, we witness in Brownian movement the phenomenon of molecular agitation on a reduced scale
by particles very large on the molecular scale—so large in fact as to be readily visible in an ultra-
microscope. The perpetual motions of the Brownian particles are maintained by fluctuations in the
collisions with the molecules of the surrounding fluid. Under normal conditions, in a liquid, a Brown-
ian particle will suffer about 10% collisions per second and this is so frequent that we cannot really
speak of separate collisions. Also, since each collision can be thought of as producing a kink in the
path of the particle, it follows that we cannot hope to follow the path in any detail—indeed, to our
senses the details of the path are impossibly fine.

The modern theory of the Brownian motion of a free particle (i.e., in the absence of an external
field of force) generally starts with Langevin’s equation

du/dt=—Bu+ A(), (132)

where u denotes the velocity of the particle. According to this equation, the influence of the surround-
ing medium on the motion of the particle can be split up into two parts: first, a systematic part
— Bu representing a dynamical friction experienced by the particle and second, a fluctuating part A(¢)
which is characteristic of the Brownian motion.
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Regarding the frictional term —pBu it is assumed that this is governed by Stokes’ law which states
that the frictional force decelerating a spherical particle of radius @ and mass m is given by 6mranu/m
where 7 denotes the coefficient of viscosity of the surrounding fluid. Hence

B=6man/m. (133)
As for the fluctuating part A(f) the following principal assumptions are made:

(i) A(?) is independent of u.
(ii) A(?) varies extremely rapidly compared to the variations of u.

The second assumption implies that time intervals of duration A¢ exist such that during A¢ the
variations in u that are to be expected are very small indeed while during the same interval A(f) may
undergo several fluctuations. Alternatively, we may say that though u(¢) and u(t+At) are expected to
differ by a negligible amount, no correlation between A(f) and A(t+Af) exists. (The assumptions
which are made here are quite analogous to those made in Chapter I, §5 in the passage to the differ-
ential equation for the problem of random flights; also see §§2 and 4 in this chapter.)

We shall show in the following sections how with the assumptions made in the foregoing para-
graphs, we can derive from Langevin’s equation all the physically significant relations concerning
the motions of the Brownian particles. But we should draw attention even at this stage to the very
drastic nature of assumptions implicit in the very writing of an equation of the form (132). For we
have in reality supposed that we can divide the phenomenon into two parts, one in which the dis-
continuity of the events taking place is essential while in the other it is trivial and can be ignored.
In view of the discontinuities in all matter and all events, this is a prima facie, an ad-koc assumption.
They are however made with reliance on physical intuition and the aposteriors justification by the
success of the hypothesis. However, the correct procedure would be to treat the phenomenon in its
entirety without appealing to the laws of continuous physics except insofar as they can be explicitly
justified. As we shall see.in Chapter IV a problem which occurs in stellar dynamics appears to provide
a model in which the rigorous procedure can be explicitly followed.

2. The Theory of the Brownian Motion of a Free Particle

Our problem is to solve the stochastic differential equation (132) subject to the restrictions on A(¢)
stated in the preceding section. But ‘‘solving”’ a stochastic differential equation like (132) is not the
same thing as solving any ordinary differential equation. For one thing, Eq. (132) involves the func-
tion A(t) which, as we shall presently see, has only statistically defined properties. Consequently,
“solving’’ the Langevin Eq. (132) has to be understood rather in the sense of specifying a probability
distribution W(u, t; us) which governs the probability of occurrence of the velocity u at time ¢
given that u=1u, at £=0. Of this function W(u, ¢; us) we should clearly require that, as t—0,

Wi, t; u0)—>8(thz—ts,0)8(thy —1y,0)8(u-—u-0)  (£50), (134)

where the §’s are Dirac’s & functions. Further, the physical circumstances of the problem require that
we demand of W(u, t; uo) that it tend to a Maxwellian distribution for the temperature T of the
surrounding fluid, tndependently of uy as t— o :

m

27nkT

H
W(u,t;uo)—+( )exp(—-mluP/ZkT) (t— ). (135)

This last demand on W(u, ¢; up) conversely requires that A(¢) satisfy certain statistical requirements.
For, according to the Langevin equation we have the formal solution

t
u—uoe—3‘=e“”‘f ePEA(E)dE. (136)
[}
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Consequently, the statistical properties of

u—uee ! (137)
must be the same as those of
t

e f SA(E)dE. (138)
0
And, as t— « the quantity (137) tends to u; hence the distribution of

( ! )
Limit (e #t | efiA(£)dE} (139)
imi | f J

(=0
- 0

must be the Maxwellian distribution
(m/2nkT)t exp (—m|u|2/2kT). (140)

Now one of our principal assumptions concerning A(¢) is that it varies extremely rapidly com-
pared to any of the other quantities which enter into our discussion. Further, the fluctuating ac-
celeration experienced by the Brownian particles is statistical in character in the sense that Brownian
particles having the same initial coordinates and/or velocities will suffer accelerations which will differ
from particle to particle both in magnitude and in their dependence on time. However, on account
of the rapidity of these fluctuations, we can always divide an interval of time which is long enough
for any of the physical parameters like the position or the velocity of a Brownian particle to change
appreciably, into a very large number of subintervals of duration At such that during each of these
subintervals we can treat all functions of time except A(f) which enter in our formulae as constants.
Thus, the quantity on the right-hand side of Eq. (136) can bé written as

(7+1)A¢
et Y epint f A(D)dE. (141)
Let ' it
t+At
B(Al) = f A()dE. (142)

The physical meaning of B(Af) is that it represents the net acceleration which a Brownian particle
may suffer on a given occasion during an interval of time At.
Equation (136) becomes
uU—uePt=3; it - B(AL), (143)

and we require that as #— « the quantity on the right-hand side tends to the Maxwellian distribu-
tion (140). We now assert that this requires the probability of occurrence of different values for B(At) be
governed by the distribution function

1
w(B[At]) =————exp (— | B(At) |*/4gAl) (144)
(4mqAt)t
where
q=BkT/m. (145)

To prove this assertion we have to show that the distribution function W(u, ¢; uo) derived on the
basis of Egs. (143) and (144) does in fact tend to the Maxwellian distribution (140) as f—®. We shall
presently show that this is the case but we may remark meantime on the formal similarity of Eq. (144)
giving the probability distribution of the acceleration B(Af) suffered by a Browniaa particle in time
At and Eq. (108) giving the probability distribution of the increment AR in the position of a particle
describing random flights in time At. It will be recalled that for the validity of Er. (108) it is neces-
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sary that At be long enough for a large number of individual displacements to occur; analogously,
our expression for w(B[At]) is valid only for times At large compared to the average period of a
single fluctuation of A(f). Now, the period of fluctuation of A(f) is clearly of the order of the time
between successive collisions between the Brownian particle and the molecules of the surrounding
fluid; in a liquid this is generally of the order of 10~ sec. Accordingly, the similarity of our expres-
sion for w(B[At]) with Eq. (108) in the theory of random flights, leads us to interpret the accelera-
tion B(Af) suffered by a Brownian particle (in a time At large compared with the frequency of col-
lisions with the surrounding molecules) as the result of superposition of the large number of random
accelerations caused by collisions with the individual molecules. This is of course eminently reason-
able; but the reason why ¢ in Eq. (144) has to be precisely that given by Eq. (145) is due to our re-
quirement that W(u, t; uo) tend to the Maxwellian distribution (140) as {— . We shall return to
these questions again in §5.

We now proceed to prove our assertion concerning Eqs. (143), (144) and (145):

We first prove the following lemma:
Lemma I. Let

R= f VDAL, (146)

Then, the probability distribution of R is given by

W(R) = : exp ( ~IRI? /4g f 'ws)dz). (147)

[4wq f ‘w(s)ds]

In order to prove this, we first divide the interval (0, ¢) into a large number of subintervals of
duration A¢t. We can then write

(7+1) At

R=v(a [ 4 (148)
i At
Remembering our definition of B(At) [Eq. (142)] we can express R in the form
R=3%;1; (149)
where
r;=y(jAY)B(AL) =y ;B(AL). (150)

According to Eq. (144) the probability distribution of r; is governed by

7(1) exp (—3|r;]*/217), (151)

(2l /3)}
where we have written

17 =6qy ?AtL. (152)

A comparison of Egs. (149) and (151) with Eqgs. (34) and (57) shows that we have reduced our present
problem to the special case in the theory of random flights considered in Chapter I, §4 case (a).
Hence, [cf. Egs. (59) and (62)]

W(R) exp (—3|R|?/2%19). (153)

T 2nsip/3)
SU=6q ;¥ 200=6g ¥ ; Y (AN,

But

¢ (154)
—6q [ v(pa
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We therefore have

WR = exo = |RI: /10 [ orie), (155)

t
|4na [ vi0ae
0
which proves the lemma.

Returning to Eq. (136) we notice that we can express the right-hand side of this equation in the
form

f V(DAL (156)

if we define

Y(E) =P 0, (157)

We can therefore apply lemma I and with the foregoing definition of ¢(£), Eq. (155) governs the
probability distribution of

u—ue "t (158)
Since, now,
t t 1
[ wie= [ esevag=—a e, (159)
0 JO 26

and remembering that according to Eq. (145)
q/B=kT/m (160)

we have proved that i

m
W(u, t;u )=[———————] exp [—m|u—ueebt|2/2-kT (1 —e )], (161)
2 ey RSN :

We verify that according to this equation

3
W (u, t;UO)_)(Z"I:T) exp (—m|u|?/2kT) (t—») (162)

V¢
i.e., the Maxwellian distribution (140). This proves the assertion we made that with the statistical
properties of B(At) implied in Eqgs. (144) and (145), Eq. (143) leads to a distribution W(u, ¢; u,)
which tends to be Maxwellian independent of u, as t— .
We shall now show how with the assumptions already made concerning B(At) we can further derive
the distribution of the displacement r of a Brownian particle at time ¢ given that the particle is at 7,
with a velocity u, at time t=0:

Since
t
r—ro=fu(t)dt, (163)
0
we have according to Eq. (136)
t n
r—ro= f dn{ Upe BB f dgeﬂm(g)} (164)
or 0 0
t 7
r—ro—Blug(1 — e~8) = f dnesn f dEBA(). (165)
0 [}

We can simplify the right-hand side of this equation by an integration by parts. We find

t t
r=ro= w1 —e?) = —gtes [ A@as+a [ A (166)
) 0
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Again, we can reduce this equation to the form
t
r—r—gu(t—e®) = [ WOA®E, (167)
0

by defini
yaemine W5 =B1(1 — ), (168)

Thus lemma I can be applied and with the definition of y(£) according to Eq. (168), Eq. (155)
governs the probability distribution of

r—ro— B ue(1 —e 5% (169)

i.e., of r at time ¢ for given ry and u,. Since,

[ o= [ a-ewoya
0 B Vo

1 (170)
=—(28t—3+4e B! — %),
23
we have.
mp? } mB2|r—ro—uo(1 —eBt) /8|2
W(r, t; 1o, uo)={ } exp —{ | v | L (171)
2k T[ 28t — 3+4ebt — —25¢] WET[ 28— 3+4eP—e20t] |

For intervals of time long compared to 8! the foregoing expression simplifies considerably. For,
under these circumstances we can ignore the exponential and the constant terms as compared to
2Bt. Further, as we shall presently show, {|r—r|2) is of order ¢ [cf. Eq. (174)]; hence we can also
neglect uo(1 —e#*)B~! compared to r—r,. Thus Eq. (171) reduces to

W(r, t; 10, Up)= exp (— |r—ro|2/4Dt) (£>B7Y) (172)

(4xDt)}
where we have introduced the ‘‘diffusion coefficient’”’ D defined by
D=kT/mB="kT/6man. (173)

In Eq. (173) we have substituted for 8 according to Eq. (133).
From Eq. (172) we obtain for the mean square displacement along any given direction (say, the

x direction) the formula
((x—x0))n=3{|r—r¢|2)0=2Dt= (kT /3man)t. (174)

This is Einstein’s result. Equation (174) has been verified by Perrin to lead to consistent and satis-
factory values for the Boltzmann constant & by observation of {(x—x®))s/t over wide ranges of T,
n and a.

The law of distribution of displacements (172) has been exhaustively tested by observation.
Perrin gives the following sets of counts of the displacements of a grain of radius 2.1X1075% cm at
30 sec. intervals. Out of a number N of such observations the number of observed values of x dis-
placements between x; and x. should be

dx
(4Dp)¥

N z2
— f exp (—«%/4Dt)
7"* 1

The agreement is satisfactory. See Table II.
Comparing Eq. (172) with the solution for the problem of random flights obtained in Eq. (107)
we conclude that for times £3>3-! we can regard the motion of a Brownian particle as one of random
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TaBLE II. Observations and calculations of the distribution of the displacements of a Brownian particle.

Range 1st set 2nd set Total
x X104 cm Obs. Calc. Obs. Calc. Obs. Calc.
0 - 34 82 91 86 84 168 175
3.4- 6.8 66 70 65 63 131 132
6.8-10.2 46 39 31 36 77 75
10.2-17.0 27 23 23 21 50 44

flights. And therefore, according to the ideas of I §5, describe the motion of Brownian particles also
as one of diffusion and governed by the diffusion equation. We shall return to this connection with the
diffusion equation from a more general point of view in §4.

Returning to Eq. (171) we see that, quite generally, we have

[uo|? kT
(r=ro|2)w=——-1—e8)24+3—— (20t —3+4e Bt — e 2), (175)
8 mg?
Averaging this equation over all values of uy and remembering that (|u,|?)s=3kT/m we obtain
kT
{lr=ro|2))an=6—(Bt—14¢75%). 175"
mB3?
For t— o, Eq. (175’) is in agreement with our result (174), while for /=0 we have instead

kT
(r=ro*Dn=3—=(uo|)nt™. (175")
m

So far we have only inquired into the law of distributions of u and r separately. But we can also
ask for the distribution W(r, u, ¢; u,, 1y) governing the probability of the simultaneous occurrence of
the velocity u and the position r at time ¢, given that u=u, and r=ry at t=0. The solution to this
problem can be obtained from the following lemma:

Lemma 11. Let
R= f V(OA®)E, (176)
0
and

t
s= [ e(0A@ (177)
0
Then, the bivariate probability distribution of R and S s given by

1
W(R, S)=——— —(G|R|*—2HRS+F|S|?/2(FG—H* 178
h R S) = ew [~ GIR| +FIS|3/2(FG—1T)] (178)
wnere

t t t
F=2[ wode G=2 [ s H=2 [ o (179)
0 0 0
The lemma is proved by writing R and S in the forms [cf. Egs. (149) and (150)]

R=3;y(jA)B(AY); S=3;¢(jAt)B(AL) (180)

and remembering that the distribution of B is Gaussian according to Eq. (144). The problem then
reduces to the one considered in Appendix II and the solution stated readily follows.



STOCHASTIC PROBLEMS IN PHYSICS AND ASTRONOMY 27

To obtain the distribution W(r, u, ¢; uo, o) we have only to set [cf. Eqs. (157), (158), (167) and
(168)]
R=r—ro— g tus(1—e); Y(§)=-1(1—e?t-0),

|
f (181)
S=u—ue?; o(§) =ef 0,
and [cf. Egs. (159) and (170) ]
F=gB7%(2pt—3+4eft—e); G=¢gB87'(1—e"), (182)
and finally
t
H= zqﬁ—xf B0 (1 —BE=0)dt=gB~2(1 — e—B)2, (183)
0
3. The Theory of the Brownian Motion of a Particle in a Field of Force.
The Harmonically Bound Particle
In the presence of an external field of force, the Langevin Eq. (132) is generalized to
du/dt=—pu+ A(t)+ K(r, t) (184)

where K(r, t) is the acceleration produced by the field. In writing this equation we are making the
same general assumptions as are involved in writing the original Langevin equation (cf. the remarks
at the end of §1).

In solving the stochastic equation (184) we attribute to A(¢) or more particularly for

t+At

B(AH) = f A(D)ds (185)

the statistical properties already assigned in the preceding section [Eq. (144)7]. The method of
solution is illustrated sufficiently by a one-dimensional harmonic oscillator describing Brownian
motion. The appropriate stochastic equation is

du/dt= —Bu+A4 (1) — ', (186)

where w denotes the circular frequency of the oscillator. We can write Eq. (184) alternatively in the
form

d*xc/dPP+Bdx/di+wPx=A(2). (187)

What we seek from this equation are, of course, the probability distributions W(x, ¢; xo, o), W(u, t;
Xo, #o) and W(x, u, ¢; xo, #9). To obtain these distributions we first write down the formal solution
of Eq. (187) regarded as an ordinary differential equation. The method of solution most appropriate
for our present purposes is that of the variation of the parameters. In this method, as applied to
Eq. (187), we express the solution in terms of that of the homogeneous equation:

x=ay exp (uit) +as exp (uot) (188)
where u; and p2 are the roots of
p+Bu+w?=0; (189)
ie.,
= —3+HAF )Y = — 18— (i) (190)

We assume that the solution of Eq. (187) is of the form (188) where @, and a, are functions of time
restricted however to satisfy the equation

exp (mt)(da:/dt) +exp (ust) (das/dt) =0. (191)
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From Eq. (187) we derive the further relation
w1 exp (wif) (dar/de) + pz exp (uat) (das/dt) = A(t). (192)
Solving Eqgs. (191) and (192) we readily obtain the integrals

1 t
ar=+ f exp (—u§A(§dé+an, l
M1 M2 Vo
1 t (193)
ay=— f exp (—u2£) A (§)dE+as, {
H1— M2 Yo

where a9 and @ are constants. Accordingly, we have the solution

X =

{ exp (uif) f exp (—mé)A(E)dE—exp (uat) f exp (—u2b)A(§)d¢ }

M1 M2
+a10 exp (uif) +az exp (uot). (194)

From the foregoing equation we obtain for the velocity % the formula

1

U=

{m exp () f exp (= mE) A ()dE— ua exp (uat) f exp (—-#zE)A(E)df}

M1 M2
+ w1810 exp (u1f) +u2a0 exp (uat).  (195)

The constants a;o and az can now be determined from the conditions that x =x, and z=u, at t=0.
We find

Xope — Uo Xop1— Ug
aypp=— i Q=+ (196)
M1 M2 M1— M2
Thus, we have the solutions
o[ Graa— ) exp () = Co — ) exp () 1= [ A (DD (197)
M1 M2 0
and t
u-+ [#1(350#2—“0) €xp (Mlt)-ﬂz(xoﬂl—uo) €xXp (#25)]=f A(E)¢(E)d£, (198)
M1 M2 0
where we have written
1
WO =——Texp Dult—HI—exp [ma—H1], 1
M1 1#2 ‘ (199)
d(H)= L1 exp [ua(t—§)]—p2 exp [u2(t—£)]]. {
M1 M2

It is now seen that the quantities on the right-hand sides of Eqs. (197) and (198) are of the forms
considered in lemmas I and II in §2. Accordingly, we can at once write down the distribution functions
Wi(x, t; xo, %0), W(n, t; x0, #o) and W(x, u, £; xo, o) in terms of the integrals

f v (OdE; f #(®d¢ and f V(OB (200)
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With ¢(¢) and ¢(¢) defined as in Egs. (199) we readily verify that

w1t pe

¢ 1
f V() dE=—" (2 exp (2u1t) +p1 exp (2pat)) — (exp [(m1tp2)t]—1)— ] (201)

(ﬂl—#2)2[2#1#2 w1t ue Kikke

t 1 2pape
f¢2(£)df=-——-[%(mexp (2p18) +p2 exp (2uat)) — e (exp [(m+nz)t]—1)—%(m+#z)], (202)
0 (11— p2)? p1t e
and ‘ )
f Y(OS(OdE=——(exp (uit) —exp ()" (203)
0 2(u1— p2)?

At this point it is convenient to introduce in the foregoing expressions the values of u; and p. ex-
plicitly according to Eq. (190): We find that the quantities on the left-hand sides of Egs. (197) and
(198) become, respectively,

XoB+2uo i
x—x0e~F!2 cosh 181 ———— P2 sinh 184¢, (204)
and '
2xow2+ﬂuo
u—uoe P2 cosh 3611+ ——e~P42 ginh 1844, (205)
1
where we have introduced the quantity 8; defined by
Br= (82— 4wt (206)
Similarly, we find
t 1 eht
[ w0de=— =@ sin 36.-+88: sinh pu-+82), (207)
0 20’8 2w’B:%6
¢ 1 e#
f 62(E)dE = — ——— (28 sinh? 18,¢ — 86 sinh Bii+612), (208)
0 28 286
and [
[ wes(@as=28e# sinke 16 (200)
0

It is seen that all the foregoing expressions remain finite and real even when g, is zero or imaginary.
Thus, while all the expressions remain valid as they stand in the ‘‘overdamped’ case (8; real) the
formulae appropriate for the periodic (8; imaginary) and the aperiodic (8: zero) cases can be readily
written down by replacing

cosh 16i¢, 817! sinh 18,1 and B! sinh By, (210)
respectively, by
cos wit, i sin wit and — sin 2wt where w; = (w?— 162)} (211)
2w, 2w
in the periodic case, and by
1,4 and ¢ (212)

in the aperiodic case.

As we have already remarked, we can immediately write down the distribution functions for the
quantities on the left-hand sides of the Egs. (197) and (198) [i.e., the quantities (204) and (205)]]
according to lemmas I and II of §2 in terms of the integrals (207)—(209). Thus,
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B 2u, 2
(x—xoe""z[cosh 1B1t+— sinh %ﬁlt] ———e P2 ginh %Blt)

Wi, 1 ) m } B1 1
y Uy y = Xp —
e o t P %T| 28 8
41erTf Y2(E)dE 1 —e>Bt{ — sinh? 18,4+ — sinh B;t-l—-l) }
0 ma? B1? B1

(213)
We have similar expressions for W(, t; xo, #o) and W(x, u, t; xe, %o).

The quantities of greatest interest are the moments {x)a, (#)n, (x®a, (#?)a and {xu)s. We find

B 2u
(x)nv=xoe—*‘"/2(cosh 1B1t+— sinh %ﬂlt) +—‘§—(-)e“’”2 sinh 18,
1

B

B 2:x00?
(u)A,=uoe""/2(cosh 1Bt —— sinh %Blt) - eP2 sinh 3842,
1 1

2

kT B B
(x’)M = (x)hﬁ +—2{ 1— “‘”(2—; sinh? %/31!'*'-—‘ sinh ﬁll‘*‘l) }, (214)
mow

1 1

kTI B2 8
(U= (u)m“r-——L 1 —e‘ﬂ‘(Z——; sinh? 13,—— sinh ﬂ,t-}—l) ,
m

1 1

4BkT
(xu)m= (x)Av(u)A,+ e~ Pt sinh? %/31[.
Bi*m 7

The foregoing expressions are the average values of the various quantities at time ¢ for assigned values
of x and # (namely, x, and u,) at time t=0. We see that

(Ww—0;  (uhw—0; (xu)—0,
t— oo, (215)
(e w—kT/ma?; (W n=kT/m,
By averaging the various moments over all values of %, and remembering that
(Uo)n=0; (U )w=~kT/m. (216)
we obtain from Egs. (214) that
B8
((x))m=xoe"ﬂ‘/2(cosh 1B1t+— sinh %Bxl),
1
2.’3(,‘0(&2
()= — e 82 sinh 3B,
1
kT kT 8 2
((xﬂ))m=——+(x02_————)e‘ﬂt(cosh 3B1t+— sinh %ﬁlt) , > (217)
mw? mw? B1
kT 4o kT
((u2)w=—+—( x?——— )e~#* sinh? 3By,
m B Mmw?
202 kT B
((xu))m=——(———-——xo2)e‘ﬁ‘ sinh %B;t(cosh 1B1t+— sinh %ﬁlt).
ﬂl mw? ﬂ

1

Fquations (214) and (217) show how the equipartition values (215) are reached as {— «.
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4. The Fokker-Planck Equation. The Generalization of Liouville’s Theorem

As we have already remarked on several occasions, in an analysis of the Brownian movement we
regard as impracticable a detailed description of the motions of the individual particles. Instead, we
emphasize the essential stochastic nature of the phenomenon and seek a description in terms of the
probability distributions of position and/or velocity at a later time starting from given initial distribu-
tions. Thus, in our discussion of the Brownian movement of a free particle in §2 we obtain explicitly
the distribution functions W(u, t; uo), W(r, t; uo, ro) and W(r, u, t; ro, uo) for given initial values of r,
and u,; similarly, in §3 we determined the distributions W («, t; xo, %), W(x, t; x0, #o) and W(x, u, t;
Xo, #o) for a harmonically bound particle describing Brownian motion. In deriving these distributions
in §§2 and 3 we started with the Langevin equation [Eq. (132) in the field-free case, and Eq. (184)
when an external field is present] and solved it in a manner appropriate to the problem. We shall now
consider the question whether we cannot reduce the determination of these distribution functions to
appropriate boundary value problems of suitably chosen partial differential equations. We have in
mind areduction similar to thatachieved in Chapter I, §5 where we showed how, under certain circum-
stances, the solution to the problem of random flights can be obtained as solutions of boundary-value
problems long familiar in the theory of diffusion or conduction of heat. That a similar reduction should
be possible under our present circumstances is apparent when we recall that the interpretation of the
problem of random flights as one in diffusion (or heat conduction) is possible only if there exist time
intervals Af long enough for the particle to suffer a large number of individual displacements but
still short enough for the net mean square displacement (| AR|2), to be small and of O(Af). And, it is
in the essence of Brownian motion that there exist time intervals At during which the physical
parameters (like position and velocity of the Brownian particle) change by “infinitesimal’’ amounts
while there occur a very large number of fluctuations characteristic of the motion and arising from
the collisions with the molecules of the surrounding fluid.

It is clear that for the solutions of the most general problem we shall require the density function
W(r, u, t); in other words, we should really consider the problem in the six-dimensional phase space.
Accordingly, we may state our principal objective by the remark that what we are seeking is es-
sentially a generalization of Liouville’s theorem of classical dynamics to include Brownian motion.
But before we proceed to establish such a general theorem it will be instructive to consider the
simplest problem of the Brownian motion of a free particle in the velocity space and obtain a differ-
ential equation for W(u, ¢); this leads us to the discussion of the Fokker-Planck equation in its most
familiar form.

(©) The Fokker-Planck Equation in Velocity Space to Describe the Brownian Motion of a Free Particle

Let At denote an interval of time long compared to the periods of fluctuations of the acceleration
A(t) occurring in the Langevin equation but short compared to intervals during which the velocity
of a Brownian particle changes by appreciable amounts. Under these circumstances we should
expect to derive the distribution function W(u, {4 Af) governing the probability of occurrence of u
at time ¢+ At from the distribution W(u, t) at time ¢ and a knowledge of the transition probability
Y(u; Ail) that u suffers an increment Au in time A¢. More particularly, we expect the relation

W(u, t+At)=fW(u—Au, Hy(u—Au; Au)d(Au), (218)

to be valid. We may parenthetically remark that in expecting this integral equation between
W(u, t+At) and W(u, t) to be true we are actually supposing that the course which a Brownian
particle will take depends only on the instantaneous values of its physical parameters and is entirely
independent of its whole previous history. In general probability theory, a stochastic process which
has this characteristic, namely, that what happens at a given instant of time ¢ depends only on the
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state of the system at time ¢ is said to be a Markoff process. We may describe a Markoff process
picturesquely by the statement that it represents ‘‘the gradual unfolding of a transition probability”’
in exactly the same sense as the development of a conservative dynamical system can be described
as ‘‘the gradual unfolding of a contact transformation.’”’ That we should be able to idealize Brownian
motion as a Markoff process appears very reasonable. But we should be careful not to conclude too
hastily that every stochastic process is necessarily of the Markoff type. For, it can happen that the
future course of a system is conditioned by its past history: i.e., what happens at a given instant of
time ¢ may depend on what has already happened during all time preceding ¢.
Returning to Eq. (218), for the case under discussion we have

1
¥(u; Au) = (dmga)! ———exp (—|Au+puAt|?/4gAt)  (q=BkT /m). (219)
Tq
For, according to the Langevin equation [cf. Eq. (142)]
Au= —BuAt+ B(Al) (220)

where B(At) denotes the net acceleration arising from fluctuations which a Brownian particle suffers
in time At; and, since the distribution of B(A¢) is given by Eq. (144), the transition probability (218)
follows at once.

Expanding W(u, t+At), W(u—Au, t) and ¢(u—Au; Au) in Eq. (218) in the form of Taylor series,
we obtain

oW
W(u, t) +—aTAt+O(At2)

to pte ate oW 1 aW *wW
[ [ [ {we -t st £ At - }
—0 Yoo Y- i ou; 2 i au,-2

i<i u,0u;

2 62
{'If(u Au) — Z—¢Au,+ ZlAu.2+Z v AueAu,-+~--}d(Aux)d(Auz)d(Aus) (221)

ou? i<i QU 0U;
or, writing

~+00
(A= f Aup(u; Au)d(Au),

—%0

(A= f " Ay s Aw)d(Aw), (222)

—00

+o0
(it = f Auidud(u; Au)d(Aw),
we have -
ow ow *W 0? 3
a—tAt+0(At2) =-X ——~—(Au,~)m+5 Z (Au. Wt (Awidujyn— 2 W—-(Au:)n

i O0u; i i<i Ou;0U; i ou;

62

W oW 9
+2 _(Au:2>kv Z - _(Au;Au1>Av+ Z

<Au,‘2>mW
u; Ou; =i du; ou; ou?

a2

+z w- (Au;Auj)A.—i-0((Au.~Au,~Auk)A,), (223)
i<i  Ou0u;
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where the remainder term involves the averages of the quantities
Aud, AulAu; and AwAwAu, (4, j, k=1, 2, 3).

Equation (223) can be written more conveniently as

oW d 1 9?
—AH0(AR) = =Y, —(W{Aun) +— 2 —(W{Au)a)
at it Ou; 2 i du?
62
+ Z (W(Au,-Au,-).v) + 0( (Au ,-Au,-Auk)Av) , (224)
i<i OU;0U;

which is the Fokker-Planck equation in its most general form.
For the transition probability (219),

(Au,-)“= —-Bu,-At; (Au,-Au,-)A,,= O(Atz) ’ (Au¢2)~,= 2th+0(At2) (225)

Hence, Eq. (224) reduces in our case to
ow
—a—AH-O(At?) = {B divu (Wu)+qVu:W}At+0(AR), (226)
¢

and passing now to the limit A7=0 we have
oW /dt=p divu (Wu)+gVui*W. (227)

We shall now show that the distribution function W(u, ¢; u,) obtained in §2, Eq. (161) is the funda-
mental solution of the Fokker-Planck Eq. (227) in the sense that this is the solution which tends to
the & function

8(ur—1y,0)8(sus—1s,0)8(us—1us o) (228)

as t—0. To prove this, we first note that but for the Laplacian term, Eq. (227) is a linear partial
differential equation of the first order. Hence, it is natural to expect that the general solution of
Eq. (227) will be intimately connected with that of the associated first-order equation

(8W/at) —B diva (Wu) =0. (229)

The general solution of this first-order equation involves the three first integrals of the Lagrangian
subsidiary system
du/di= —u. (230)

The required first integrals are therefore
ueft=u,=constant. (231)

Accordingly, for solving Eq. (227) we introduce a new vector ¢ defined by

o= (& n, {) =ues. (232)
Equation (227) now becomes
OW/ot=3B8W+qeVo:W. (233)
This equation can be further simplified by introducing the variable
x = Wet. (234)
We have
ax d%x 0%*%x 9%
_=qezst(___+_._+___ . (235)
ot g an* a¢?
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The solution of this equation can be readily written down by using the following lemma:
Lemma 1. If ¢(8) is an arbitrary function of time, the solution of the partial differential equation
dx/0t=¢*(t)Vex (236)

which has a source at g=g, at time t=0 1s

x=———l1——-——%eXP(—Io—eo!‘l/‘lftdﬂ(t)dt)- (237)
[47r f ¢2(t)dt] ’

We shall omit the proof of this lemma as it is very elementary.
Applying this lemma to Eq. (235) we have the fundamental solution

1 t
X=——————exp (‘ Iueﬂ‘—u0|2/4qf e”'d‘)’ (238)
[41rq f e”‘dt] '
0

or, returning to the variable W according to Eq. (234) we have
1
Wiy, t; uo) = exp [ —Blu—uoe|?/29(1 —e )] (239)
" Lamg(1—e9 /g1

which agrees with our earlier result in §2, Eq. (161).

(#1) The Generalization of Liouville’s Theorem to Include Brownian Motion

We shall now consider the general problem of a particle describing Brownian motion and under the
influence of an external field of force.

Let At again denote an interval of time which is long compared to the periods of fluctuations of the
acceleration A(f) occurring in the Langevin Eq. (184) but short compared to the intervals in which
any of the physical parameters change appreciably. Then, the increments Ar and Au in position and
velocity which the particle suffers during At are

Ar=uAt; Au= — (Bu— K)At+ B(Al), (240)

where K denotes the acceleration per unit mass caused by the external field of force and B(At) the
net acceleration arising from fluctuations which the particle suffers in time A¢. The distribution of
B(At) is again given by Eq. (144).

Assuming as before that the Brownian movement can be idealized as a Markoff process the prob-
ability distribution W(r, u, {4+ At) in phase space at time ¢+ At can be derived from the distribution
W(r, u, t) at the earlier time ¢ by means of the integral equation

W(r, u,t+At)=ffW(r—Ar, u—Au, t)¥(r—Ar, u—Au; Ar, Au)d(Ar)d(Au). (241)

According to the Eqgs. (240) we can write
W(r, u; Ar, Au) =y (r, u; Au)§(Ax — u,At) §(Ay — usAt) §(Az— usAt), (242)

where the §'s denote Dirac’s § functions and ¢(r, u; Au) the transition probability in the velocity
space. With this form for the transition probability in the phase space the integration over Ar in
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Eq. (241) is immediately performed and we get
W(r, u, t+At)=fW(r—uAt, u—Au, H)Y(r—ult, u—Au; Au)d(Au). (243)

Alternatively, we can write

W(r+uAt, u, t+At) = fW(r, u—Au, A)Y(r, u—Au; Au)d(Au). (244)

Expanding the various functions in the foregoing equation in the form of Taylor series and proceeding
as in our derivation of the Fokker-Planck equation, we obtain [cf. Eq. (221)]
ow d 1 92
(————}—u-gradr W)AH-O(M) = -3 —(W{duw)+— X —(W{Au2)n)
at i ou; 2 i du?
EY

+2

i<i OU0U;

( W(Au .'Au,')m) + O( (Aquu ,'Auk>,u) . (245)

This is the complete analog in the phase space of the Fokker-Planck equation in the velocity space.
For the case (240), the transition probability ¢(u; Au) is given by [cf. Eq. (144)]

Y(u; Au) =

(drgdi)t " (=l Au+(Bu— K)At|?/4gAt). (246)
vi{

And with this expression for the transition probability we clearly have
<A14~,'>Av = — (Bu. - K{)At; (Au.-z)n = ngt-*- O(Aﬁ) H (Au.-Au,-)Av = O(Aﬁ) . (247)

Accordingly Eq. (245) simplifies to

82

JaW a
——+ugradr W}AH—O(AF) = { > —[Bui—K)W]l+q X
| o i ou; i

and now passing to the limit A/=0 and after some minor rearranging of the terms we finally obtain
AW /dt+uegradr W+ Kegrada W= diva (Wu)+qV2W. (249)

The foregoing equation represents the complete generalization of the Fokker-Planck Eq. (227) to
the phase space. At the same time Eq. (249) represents also the generalization of Liouville’s theorem
of classical dynamics to include Brownian motion; more particularly, on the right-hand side of
Eq. (249) we have the terms arising from Brownian motion while on the left-hand side we have the
usual Stokes operator D/D¢ acting on W.

}At—{—O(At?), (248)
6ui2

(422) The Solution of Equation (249) for the Field Free Case
When no external field is present Eq. (249) becomes
dW/ot+uegrad, W=238W+Busgradu W+qV2W. (250)
To solve this equation we again note that the equation
AW /dt+uegrad: W=38W+Bue-grada W (251)

derived from (250) by ignoring the Laplacian term ¢gV.*W is a linear homogeneous first-order partial
differential equation for We=%#!. Accordingly, the general solution of Eq. (251) can be expressed in
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terms of any six independent integrals of the Lagrangian subsidiary system

du/di=—Bu; dr/dt=u. (252)
Two vector integrals of this system are
uebt= Il, T+U/B= 12. (253)
Accordingly, to solve Eq. (119) we introduce the new variables
o=(&m, ) =uef; P=(X,Y, Z)=r+u/B. (254)
For this transformation of the variables we have
oW ]
—6;=7W(9, P, t)+Be-gradg W |
(255)
gradr W=gradp W,
gradu W=ef* gradg W+-(1/B) gradr W, )
and finally
Vit W =e%'Vg? W+ (2/B)ef* Vo VPW+(1/84) VP . (256)
Substituting the foregoing equations in Eq. (250) we obtain
oW /ot=3BW+q{e*'Vg’ W+ (2/B)ef Vo -VPW+(1/84) VP W}, (257)
Again, we introduce the variable
x= We=36¢, (258)
Equation (257) reduces to
dx/8t=q{e®'Vo*x+(2/8)ef*Vo Vpx+(1/8%)Vpix}, (259)

or, written out explicitly

ax J dx a?x dx L x| ¥ 1 /8% x99\ )
qew( ) _e,,( )+—(—+——+—) A
at l g 61) 6;‘2 9t0X anaY 992 B2\oX?% 9Y? 922

To solve this equation we first prove the following lemma:

Lemma I1. Let ¢(t) and (&) be two arbitrary functions of time. The solution of the differential equation

dx 0%x
;—¢2(t)—+2¢(t)¢(t) +¢2( (261)
which has a source at t=X=0at {=0 1s
X , &XP [—(@&+2rEX+bX?)/24] (262)
where . i , t
a=2 f V()dt; h=—2 f s()v(D)dt; b=2 f $(t)dt, (263)
and 0 0 0
A=ab—h2. (264)

To prove this lemma we substitute for x according to Eq. (262) in the differential Eq. (261).
After some minor reductions we find that we are left with
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1dA da, db,
~—+ sﬁ——+2sX—+X2 26 (@B 20 EX 4 hX — )
A dt dt dt

oy (@i £+ b X2+ EX[hlt+aibi]— 1) + 292 (284 2101 EX +5:2X*— 1) =0,  (265)

where we have written

m=a/A; h=h/A; bi=b/A. (266)
Equating the coefficients of £, £X and X? in (265) we obtain the set of equations
day/dt= —2(a0+hy)*, )
dbi/dt= —2(lnp+b)*, j (267)
dhy/dt= —2(a19p+h) (ho+b),

and
dA/dt=2A(a1¢*+ 2hidy +biy?). (268)

It is readily verified that Eq. (268) is consistent with the Eq. (267) [see Egs. (271) and {(272) below].
Since [cf. Egs. (266) ]

da/dt=A(da,/dt) +a,(dA/dt), (269)
we have according to Eqs. (267) and (268)
d(l/dt = - 2A(a1¢+h1\//)2+ZA(012¢2+2(1«1]’L1¢II/ +111b1ll/2) = 2A(a1b1 - hlz)lllz, (270)
or
da/dt= 2. (271)
Similarly we prove that
db/dt=2¢*; dh/dt= —2¢y. (272)
Hence,
1 t t
a=2f g h=—2f vt b=2f odt. (273)

The lemma now follows as an immediate consequence of the boundary conditions at {=0 stated.
In order to apply the foregoing lemma to Eq. (260) we first notice that the equation is separable in
the pairs of variables (¢, X), (, ¥) and (¢, Z). Expressing therefore the solution in the form

=x1(§ X)xa(n, Y)xs(¢, 2), (274)
we see that cach of the functions xi, xe and x3 satisfies an equation of the form (261) with
o(t)=glef'; Y(t)=g/B. (275)
Hence, the solution of Eq. (260) with the boundary condition
. e=go, P=P, at (=0 (276)
is
X= exp { —[ale—go|*+2h(0—go) *(P—Po)+b|P—Po|?]/24} (277)

8w3Al x
t
a=2gB? f dt=2qB7%,
0

b=2g f edt = gB1(e¥— 1), i (278)
0

t
h= —2qﬁ—lf eftdt= —2gB~2(eft —1),
0
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and
o—oo=efu—uy; P—Po=r+4u/B—ro—us/B. (279)
In Eq. (279) ro and u, denote the position and velocity of the Brownian particle at time ¢=0. Finally,
e3ﬁt
= arint P { —[alo—0o|2+2h(o—g0) «(P—Po)+b| P—Py|2]/24}. (280)
™

We shall now verify that the foregoing solution for W obtained as the fundamental solution of
Eq. (250) agrees with what we obtained in §2 through a discussion of the Langevin equation: With R
and S as defined in Eqgs. (181) we have

o—0o=e#S; P—P,=R+(1/8)S. (281)
Accordingly,
alo—eo|*+2h(p—go) *(P—Po)+b|P—Py|2=ae®|S|*+2he? (R+*S+(1/8) | S| +b| R+ (1/8)S|?,) (282)
= (F|S|*—2HR*S+G|R|?), j
where
F=a+42hB e Ft+bB %%, G=be %!; H= — (heB'+bple21), (283)
With @, b and % as given by Eqgs. (278) we find that
F=qB-3(28t—3+4e P —e8t); G=gf'(1—et); H=qB2(1—e Pty (284)
Further,
FG—H?= (ab—h?)e %t = Ae 28!, (285)
Thus the solution (280) can be expressed alternatively in the form
exp [—(F|S|?*—2HR+S+G|R|?)/2(FG—H?)]. (286)

W=——
8m3(FG— H?)}
Comparing Eqgs. (284) and (286) with Eqgs. (178), (182) and (183) we see that the verification is
complete.
(1) The Solution of Equation (249) for the Case of a Harmonically Bound Particle

The method of solution is sufficiently illustrated by considering the case of a one-dimensional
oscillator describing Brownian motion. Equation (249) then reduces to

W oW ow ow 2w
—4U——wx——=pu—+pW+¢ .
ot ox ou ou ou?

(287)

As in our discussion in the two preceding sections we introduce as variables two first integrals of the
associated subsidiary system:

dx/dt=u; du/dt=—Bu—w. (288)
Two independent first integrals of Eqs. (288) are readily seen to be
(xp1—u) exp (—p2t) and  (xpe—u) exp (—uit) (289)
where p; and p, have the same meanings as in §3 [cf. Egs. (189) and (190)]. Accordingly we set
§=(xp1—u) exp (—pat); n=(xp2—u) exp (—mt). (290)
In these variables Eq (287) becomes
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ow 4 *wW *PwW
——=5W+q(exp (= 2pot)——+2 exp (— (u1+u2)f) +exp (—2ut) ) (291)
at 9 dkdn an*
Introducing the further transformation
W= xef!, (292)
we finally obtain
dx 9%x 9%y 9%x
= g (exp (22 exp L= o) Jexp (= 2u) - ) (299)
ot 9 dtdn an’

This equation is of the same form as Eq. (261) in lemma II. Hence the solution of this equation which
tends to 8(£— £0)8(n— mo) as t—0 is

X= P { —[a(E—£0)*+2h(£— £o) (n—mn0) +b(n—1n0)*]/24}, (294)
where T
¢ q \
a==29f exp (—2ut)dt=—[1—exp (—2u1t)],
0 31
b=2qf exp (—2y2t)dt=g[1—-exp (—2pu2t) ], > (295)
0 M2
h==24 [ exp [= (uurbua)iit= ———(1—exp [ = (ua-tuo)e]).
0 1t pe
Further,
Eo=Xou1—Uo; M0= Xope— Yo, (296)

where xo and %, denote the position and velocity of the particle at time {=0. It is again verified that

the solution
e’

W=2_Z exp { —[a(&— &)+ 2h(E— &) (n—n0) +b(n—n0)2]/24}, (297)

A}

obtained as the fundamental solution of Eq. (287) is in agreement with the distributions obtained in
§3 through a discussion of the Langevin equation.

(v) The General Case

Our discussion in the two preceding sections suggests that in dealing with Eq. (249) quite generally
we may introduce as new variables six independent first integrals of the equatioris of motion

dr/di=u; du/di=—pu+K. (298)
These are the Lagrangian subsidiary equations of the linear first-order equation derived from (249)
after ignoring the Laplacian term gV*W. If I, - - -, I5 are six such integrals, we introduce
Ii(r,u,t), -+ -, Is(r, u, 1) (299)
as the new independent variables. If we further set
W= xe?#, (300)
Eq. (249) will transform to
ax/ot=q[Vax]1, -+ 1., (301)

where the Laplacian of x on the right-hand side has to be expressed in terms of the new variables
Iln Y Iﬂ'
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We shall thus be left with a general linear partial differential equation of the second order for x;
and we seek a solution of this equation of the form

X=——e @, (302)

8r3Al

where Q stands for a general homogeneous quadratic form in the six variables I, - - -, I with coeth-
cients which are functions of time only. Further, in Eq. (302) A is the determinant of the matrix
formed by the coefficients of the quadratic form. In this manner we can expect to solve the general
problem.

(vi) The Differential Equation for the Displacement (£>B71). The Smoluchowski Equation

We have seen that all the physically significant questions concerning the motion of a free Brownian
particle can be answered by solving Eq. (250) with appropriate boundary conditions. However, if
we are interested only in time intervals very large compared to the ‘‘tsme of relaxation’ 8~! we can
apply the method of the Fokker-Planck equation to configuration space (r) independently of the
velocity space. For, according to Eq. (172), we may say that for a free Brownian particle, the transi-
tion probability that r suffers an increment Ar in time A>3~ is given by

1
y(ar) =———-*(4TDM)§ exp (— |Ar

*/4DAt), (303)
where

D=q/B*=kT/m§. (304)

Thus, again with the understanding that A£2>B-! we can write [cf. Eq. (218) and the remarks follow-
ing it

w(r, t+AL) = f'w(r——Ar, Y (Ar)d(Ar). (305)

Applying now to this equation the procedure that was followed in the derivation of the Fokker-
Planck equation in the velocity space we readily obtain the ‘‘diffusion equation”

dw/dt=DV w. (306)

That we should be led to the diffusion equation is not surprising since Eq. (303) implies that for time
intervals A>3~ the motion of the particle reduces to the elementary case of the problem of random
flights (Chapter I, §4 case [c]) and the analysis of I §5 leading to Eq. (112) applies.

Equation (306) is valid for a free Brownian particle. To extend this result for the case when an
external field is acting we start from Eq. (249) which is quite generally true in phase space. We first
rewrite this equation in the form

ow

1 q K q q K
~——=6(divu-— din)(Wu+-— gradu W——W+— gradr W)+din (—gradr W—-——W). (307)
ot B B B B g B

We now integrate this equation along the straight line
r+u/B=constant=r,, (308)
from u= — »© to + . We obtain

] q K
— Wdu=f din(— gradr W——W)du. (309)
ot Jryug~lar ryug lar, B? B
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We shall now suppose that K(r) does not change appreciably over distances of the order of (g/32%)?.
Then, starting from an arbitrary initial distribution W(r, u, 0) at time ¢=0 we should expect that a
Maxwellian distribution of the velocities will be established at all points after time intervals A>8-1.
Consequently, if we are not interested in time intervals of the order of 8~! we can write

m i
W(r, u, t)ﬁ( ) exp (—m|u|?/2kT)w(r, t). (310)
2wkT
With these assumptions Eq. (309) becomes
dw q K(ro)
—=2divry { — gradro w(ro) — w(7o) }. (311)
ot 8

The passage from Egs. (309) to (311) is the result of our supposition that in the domain of u from
which the dominant contribution to the integral on the right-hand side of Eq. (309) arises (namely,
|u| <(kT/m)*=(g/B)?) the variation of r (which is of the order |u|/8==(g/8%?%) is small compared
to the distances in the configuration space in which K and w change appreciably. The required general-
ization of Eq. (306) is therefore

w q K
—=divr (— gradr w——-w). (312)
ot B B

Equation (312) is sometimes called Smoluchowski’s equation.
An immediate consequence of Eq. (312) may be noted. According to this equation a stationary
diffusion current j obeys the law

J=B"1Kw—gB~? grad w=constant. (313)
If K can be derived from a potential LB so that

K=—grad Q8 (314)
Eq. (313) can be rewritten in the form

Jj=—gB7* exp (—BB/q) grad (w exp (8B/q)), (315)
where it may be noted g/8=kT/m. Integrating Eq. (315) between any two points 4 and B we obtain

A

B kT
jo f 8 exp (B%/q)ds =—w exp (88/q) | , (316)
A m

B

an important equation, first derived by Kramers.

We may finally again draw attention to the fact that Egs. (306) and (312) are valid only if we ignore
effects which happen in time intervals of the order of 8~ and space intervals of the order of (¢/8%)};
when such effects are of interest we should go back to Egs. (249) or (250) which are rigorously valid
in phase space.

(vit) General Remarks

So far we have only shown that the discussion based on Eq. (249) and its various special forms
leads to results in agreement with those already derived on the basis of the Langevin equation.
However, the special importance of the partial differential equations arises when further restrictions
on the problem are imposed. For, these additional restrictions can also be expressed in the form of
boundary conditions which the solutions will have to satisfy and the consequent reduction to a
boundary value problem in partial differential equations provides a very direct method for obtaining
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the necessary solutions. The alternative analysis based on the Langevin equation would in general
be too involved.

Further examples of the use of the partial differential equations obtained in this section will be
found in Chapters III and IV.

5. General Remarks

A general characteristic of the stochastic processes of the type considered in the preceding sections
is that the increment in the velocity, Au which a particle suffers in a time At long compared to the
periods of the elementary fluctuations can be expressed as the sum of two distinct terms: a term
KAt which represents the action of the external field of force, and a term su(At) which denotes a
fluctuating quantity with a definite law of distribution. Thus

Au= KAt+ou(Al); (317)
the corresponding increment in the position, Ar is given by
Ar=uAt, (318)

where u is the instantaneous velocity of the particle.

When dealing with stochastic processes of the strictly Brownian motion type we further suppose
that the term éu(A¢) in Eq. (317) can in turn be decomposed into two parts: a part —SuAf represent-
ing the deceleration caused by the dynamical friction —Bu and a fluctuating part B(Atf) which is
really the vector sum of a very large number of very “minute’ accelerations arising from collisions
with individual molecules of the surrounding fluid:

du(At) = — BuAt+ B(At). (319)

It is this particular decomposition of su(A¢) that is peculiarly characteristic of stochastic processes
of the Brownian type.

Concerning B(At) in Eq. (319) we have supposed in §§2, 3, and 4 that it is governed by the distri-
bution function [cf. Egs. (144) and (145)]

1
w(B[At]) =———— exp (— | B(At)|2/4qAt), (320)
(4mgAt)?
where
q=pBkT/m. (321)

In this choice of the distribution function for B(Af) we were guided by two considerations: First,
that starting from any arbitrarily assigned distribution of the velocities we shall always be led to the
Maxwellian distribution as t— % (or, alternatively that the Maxwellian distribution of the velocities
is invariant to stochastic processes of the type considered); and second that during a time At in which
the position and the velocity of the particle will change by an “infinitesimal’’ amount of order At the
particle will in reality suffer an exceedingly large number of individual accelerations by collisions with
the molecules of the surrounding fluid. This second consideration would suggest, from analogy with
the simple case of the problem of random flights [Eq. (108)7], a formula of the form (320). The
particular value of ¢ (321) then follows from the first requirement.

Combining Egs. (319) and (320) we obtain for the transition probability ¥ (u; su) for u to suffer
an increment éu due to the Brownian forces only, the expression

Y(u; du)= xp (— | BuAi+du|2/4qAtL). (322)

—— ¢
(4mgAt)?

We shall now briefly re-examine the problem of continuous stochastic processes more generally
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from the point of view of the invariance of the Maxwell-Boltzmann distribution
W =constant exp | —[m|u|2+2mB(r)]/2kT}; K=-—grad B (323)

to processes governed by Egs. (317) and (318) only i.e., without making the further assumptions
included in Eqgs. (319)-(322).

Assuming, as we have done hitherto, that the stochastic process we are considering is of the Markoff
type we can write the integral equation [cf. Eq. (241)]

W(r, u, H—At):ffW(r—Ar, u—Au, t)V(r—Ar, u—Au; Ar, Au)d(Ar)d(Au). (324)

According to Egs. (318) we expect that [cf. Eq. (242)]
V(r, u; Ar, Au) =y(r, u; Au)6(Ax — u1A) 5(Ay — u2At) §(Az — usAt). (325)

Equation (324) becomes
W(r, u, t+At)= fW(r——uAt, u— KAt—du, )y (r—uAdt, u— KAt— du; KAt+ou)d(du), (326)

where we have further substituted for Au according to Eq. (317). Equation (326) can be written
alternatively as

W(r+4uAt, u+ KAt t+At) = fW(r, u—ou, t)Y(r, u—ou; su)d(du). (327)

Applying to this equation the same procedure as was adopted in the derivation of the Fokker-
Planck and the generalized Liouville equations in §4, we readily find that [cf. Eq. (245)]

ow d 1 a2
!——i—u-gradr W+ K ogradu W}AH— 0Ar) = =3 —(W{(dun)+— X ——(W(ou)n)
l at i ou; 2 6u,-2
62
+3 (W {(ou:dupn) +O({dudu;0ui)n) (328)
i<i Qu;0u;

where (8u ) etc., denote the various moments of the transition probability ¢(r, u; éu).
We shall now suppose that

{6u,~)h = [.L,-At+ O(Atz) ’ <5u,‘2>~, = pi,‘At-f-O(At?) ’ (6u,-6u,~>,w Ll yijAt+O(At2), (329)

and that all averages of quantities like du;8u ;6u; are of order higher than one in Af. With this under-
standing we shall obtain from Eq. (328), on passing to the limit At=0 the result

ow a 1 92 02
a—t+u-gradr W+ Kegradu W= -3 6—(Wu,-)+5 2 —(Wu)+2
U; i

i U i<i OU0U;

(W) (330)

We now require that the Maxwell-Boltzmann distribution (323) satisfy Eq. (330) identically.
On substituting this distribution in Eq. (330) we find that the left-hand side of this equation vanishes
and we are left with

a 1 92
=2 —[exp (—m|u|?/2-T)p ]+~ L —[exp (—m|u|?/2kT)pi]
i du; 2 i auf

62

+2

i<i Ou;0uU;

[exp (—m|u[?/2kT)pi;;]1=0. (331)



44 S. CHANDRASEKHAR
Equation (331) is to be regarded as the general condition on the moments.
For the distribution (322)

pi=—PBui; pii=29=20kT/m; u;;=0. (332)

Also, the third and higher moments of du do not contain terms linear in At

We readily verify that with the u's given by (332) we satisfy Eq. (331). It is not, however, to be
expected that (332) represents the most general solution for the u’s which will satisfy Eq. (331).
It would clearly be a matter of considerable interest to investigate Eq. (331) (or the generalization
of this equation to include terms involving u:j etc.,) with a view to establishing the nature of the
restrictions on the u's implied by Eq. (331). Such an investigation might lead to the discovery of new
classes of Markoff processes which will leave the Maxwell-Boltzmann distribution invariant but
which will not be of the classical Brownian motion type. It is not proposed to undertake this investiga-
tion in this article. We may, however, draw special attention to the fact that according to Egs. (331)
and (332), B8 can very well depend on the spatial coordinates (though ¢/B8[ =T /m] must be a con-
stant throughout the system). Thus, the generalized Liouville Eq. (249) and the Smoluchowski

Eq. (312) are valid as they stand, also when g8=4(r).

CHAPTER III

PROBABILITY AFTER-EFFECTS: COLLOID STATIS-
TICS; THE SECOND LAW OF THERMODY-
NAMICS. THE THEORY OF COAGULATION,
SEDIMENTATION, AND THE ESCAPE OVER
POTENTIAL BARRIERS

In this chapter we shall consider certain prob-
lems in the theory of Brownian motion which
require the more explicit introduction than we
had occasion hitherto, of the notion of probability
after-effects. The fundamental ideas underlying
this notion have already been described in the
introductory section where we have also seen
that colloid statistics (or, more generally, the
phenomenon of density fluctuations in a medium
of constant average density) provides a very
direct illustration of the problem. The theory of
this phenomenon which has been developed
along very general lines by Smoluchowski has
found beautiful confirmation in the experiments
of Svedberg, Westgren, and others. This theory
of Smoluchowski in addition to providing a
striking application of the principles of Brownian
motion has also important applications to the
elucidation of the statistical nature of the second
law of thermodynamics. In view, therefore, of
the fundamental character of Smoluchowski's
theory we shall give a somewhat detailed ac-
count of it in this chapter (§§1-3). (In the later
sections of this chapter we consider further
miscellaneous applications of the theory of
Brownian motion which have bearings on prob-
lems considered in Chapter IV.)

1. The General Theory of Density Fluctuations
for Intermittent Observations. The Mean
Life and the Average Time of Recurrence of a
State of Fluctuation

Consider a geometrically well-defined small
element of volume v in a solution containing
Brownian particles under conditions of diffusion
equilibrium. (More generally, we may also
consider v as an element in a very much larger
volume containing a large number of particles
in equilibrium.) Suppose now that we observe
the number of particles contained in v system-
atically at constant intervals of time 7 apart.
Then the frequency W(n) with which different
numbers of particles will be observed in v will
follow the Potsson distribution (see Appendix III),

W(n)=ev*/n!, (333)

where v denotes the average number of particles
that will be contained in v:

=3 aW () =y 5 — =y (334)
n=0 a=1(n—1)!

In other words, the number of particles that will
be observed in v is subject to fluctuations and the
different states of fluctuations (which, in this
case, can be labelled by #) occur with definite
frequencies.

According to Eq. (333) the mean square
deviation & from the average value » is given by

2= ((n—v))n= (n*)n—1? (335)
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or, since
© e—'yn 3
(nw= 2 n*
n=0 n!
g w0 pn—2 © pyn—1 > (336)
=e vy, + 3
| »=2 (n—=2)! r=1 (m—1)!
=pitv, J
we have
=v. (337)

It is seen that the frequency with which the
different states of fluctuation # occur is inde-
pendent of all physical parameters describing
the particle (e.g., radius and density) and the
surrounding fluid (e.g., viscosity). The situation
is, however, completely changed when we con-
sider the speed with which the different states
of fluctuations follow each other in time. More
specifically, consider the number of particles »
and m contained in v at an interval of time ~
apart. We expect that the number m observed
on the second occasion will be correlated with the
number # observed on the first occasion. This
correlation should be such, that as t—0 the
result of the second observation can be predicted
with certainty as #, while as t— » we shall ob-
serve on the second occasion numbers which will
increasingly be distributed according to the
Poisson distribution (333). For finite intervals
of time 7 we can therefore ask for the transition
probability W(n;m) that m particles will be
counted in v after a time 7 from the instant when
there was observed to be 7 particles in it.

In solving the problem stated toward the end
of the preceding paragraph we shall make, follow-
ing Smoluchowski, the two assumptions: (1)
that the motions of the individual particles are
not mutually influenced and are independent of
each other and (2) that all positions in the ele-
ment of volume considered have equal a prior:
probability. Under these circumstances we can
expect to define a probability P that a particle
somewhere inside v will have emerged from it
during the time 1. The exact value of this prob-
ability after-effect factor P will depend on the
precise circumstances of the problem including
the geometry of the volume v. In §2 we shall
obtain the explicit formula for P when the
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motions of the individual particles are governed
by the laws of Brownian motion [Eq. (380)7;
and similarly in §3 we shall obtain the formula
for P for the case when the particles describe
linear trajectories [Eq. (413)]. Meantime, we
shall continue the discussion of the speed of
fluctuations on the assumption that the factor P
as defined can be unambiguously evaluated
depending, however, on circumstances.

It is clear that the required transition prob-
ability W(n;m) can be written down in an
entirely elementary way if we know the prob-
abilities with which particles enter and leave the
element of volume. More precisely, let 4,
denote the probability that starting from an
initial situation in which there are # particles
inside v some ¢ particles will have emerged from
it during 7; this probability of emergence of a
certain number of particles will clearly depend
on the initial number of particles inside w.
Similarly, let E; denote the probability that <
particles will have entered the element of volume
v during 7. Since one of our principal assumptions
is that the motions of the particles are not
mutually influenced, the probability of entrance
of a certain number of particles cannot depend on
the number already contained in it. We shall
now obtain explicit expressions for these two
probabilities in terms of P.

The expression for 4, can be written down
at once when we recall that this must be equal
to the product of the probability P? that some
particular group of 7 particles leaves v during ,
the probability (1—P)»* that the remaining
(n—1) particles do not leave v during 7, and the
number of distinct ways C;* of selecting 7 par-
ticles from the initial group of #. Accordingly,

n!

—_Pz(l —_ P) n—1i

A =CrPi(1—P)ri= ,
il(n—1)! (338)

which is a Bernoulli distribution.

To obtain the expression for E; we first
remark that this must equal the probability
that ¢ particles emerge from the element of
volume v on an arbitrary occasion; since, under
equilibrium conditions the a priori probabilities
for the entrance and emergence of particles
must be equal. Remembering further, that E; is
independent of the number of particles initially
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contained in v, we clearly have

Ei= (Ai(”))m=i. W(n)4:™,
where W(n) is the probability that v initially
contained » particles; W(n) accordingly is given

by (333). Combining Eqgs. (333), (338), and
(339) we therefore have

(339)

= e’y n! _
Ei=3 Pl = P),

n=1i n! i!(n“"i)!

B«V(VP)"' o Vn—‘t(l_P)n—i

(n—1)!

(340)

il a=i

e~ (vP)?

ev(l—f’)‘
!

Thus,
E;=e?(vP)i/1!,

(341)

in other words, a Poisson distribution with
variance »P.

Using the formulae (338) and (341) for A4,
and E; we can at once write down the expression
for the transition-probability W(n; n+k) that
there is an increase in the number of particles
from »n to n+k. We clearly have

W(n; n—i—k) = Z A,'(")E,'+k.

=0

(342)

Similarly, for the transition probability
W(n;n—Fk) that there is a decrease in the
number of particles from # to n—% we have

Wn;n—k)=3 A{WE,, (k<n). (343)
=k
From Eqgs. (338), (341), (342), and (343) we
therefore obtain

Wn;,n+k)=e? > C?Pi(1—P)»

P /4R, (344)
and
Winin—k)=e=? ¥ CrPi(1—P)
S (vP)i/(i—k)]  (345)

The foregoing expressions for the transition
probabilities are due to Smoluchowski.

The formulae (344) and (345) in spite of their
apparent complexity have in reality very simple
structures. To see this we first introduce the
Bernoulli and the Poisson distributions
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w1 M (x)=C,(1—P)zPr=
and
wy(y) =eF(vP)v/y!

w,™(x) is the probability that some x particles
remain in v after a time 7 when initially there
were n particles in it; similarly, ws(y) is the
probability that y particles enter v in time 7.
In terms of the distributions (346) and (347) we
can rewrite Eqs. (344) and (345) as

(0gx<n), (346)

(Ogy<=).  (347)

W n+k) =3 w0 (n—i)ws(i+E), (348)

=0
and

Whin—k)=3 wi™nm—10)w(1—k), (349)
=k

or, writing m for n-+k, respectively n—k, we
see that both Eqgs. (348) and (349) can be in-

cluded in the single formula
W(n,m)= 3 wi™ (x)wa(y).

z+y=m

In other words, the distribution W(n, m) for a
fixed value of n is the “‘sum’ of the two distribu-
tions (346) and (347). And, therefore, the mean
and the mean square deviation for the distribu-
tion of m according to (350) is the sum of the
means and the mean square deviations of the
component distributions (346) and (347) (see
Appendix IV). Since [cf. Egs. (334) and (335)

and Appendix I Egs. (621) and (624) ]

(w=n(1—P); ((x—(@)w))n=nP(1—-P), (351)

(350)

and
Wn=vP; ((y—@m)w=vP, (352)
we conclude that
(mw=n(1—P)+vP, (353)
and
((m—(m)Av)Z)Av=nP(1jP)+vP. (354)
Let
A,=m—n. (355)
Then, according to Egs. (354) and (355)
<An>Av=<m>Av"’n=(V—n)P, (356)
and
(At = ((m— (m)an—+ (m)n—n)")a ]
= ((m— (m)n)? )+ (MY —n)? t (357)
=nP(1—P)+vP+ (v—n)2P?, |
(An2>Av=P2[(V_n)2_n]+(n+V,\P. (358)
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It is seen that according to Eq. (356) the
number of particles inside v changes, on the
average, in the direction of making # approach
its mean value, namely ». In other words, the
density fluctuations studied here in terms of a
“microscopic’’ analysis of the stochastic motions
of the individual particles are in complete agree-
ment with the macroscopic theory of diffusion.

The quantities (A.)y and (A,2)s represent the
mean and the mean square of the differences
that are to be expected in the numbers observed
on two occasions at an interval of time r apart
when on the first occasion n particles were ob-
served. If now, we further average (A,)a and
(A.2)n over all values of # with the weight func-
tion W(n) we shall obtain the mean and the
mean square of the differences in the numbers of
particles observed on consecutive occasions in a
long sequence of observations made at constant
intervals 7 apart. Thus [cf. Eq. (334)]

<A)AV= <<An>Av>Av= (V_n)AvP::O, (359)

a result which is to be expected. On the other
hand [cf. Eq. (337)]

(A% = ({AnH)a )
=P{(v—n))w— (mIn ]+ (n+v)nP i (360)
=P2(8*— (n)a)+ ((n)n+7) P, J

(A% =20P.

or

(361)

Equation (361) suggests a direct method for
the experimental determination of the prob-
ability after-effect factor P from the simple
evaluation of the mean square differences
(A%, from long sequences of observations of #
(see §2 below). Further, according to Eq. (361)

<A2>Ay=2V

when P=1. (362)

This result is in agreement with what we should
expect, since, when P=1 there will be no corre-
lation between the numbers that will be ob-
served on two occasions at an interval r apart;
(A?),, then simply becomes the mean square of the
differences between two numbers each of which
(without correlation) is governed by the same
Poisson distribution; and, therefore [cf. Egs.
(333) and (336)],
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(A= {(n—m)* =m0 ) — 2(n Y (),
=2(1+v)—212=2», (P=1). (363)

We shall now show how we can define the
mean life and the average time of recurrence for a
given state of fluctuation in terms of the transi-
tion probability W(n; n):

Wn;n)=e? 3 CoPi(1—P)"i(vP)i/i!, (364)
i=0
which gives the probability that #» will be ob-
served on two consecutive occasions. Accord-
ingly, the probability ¢,.(k7) that the same num-
ber n will be observed on (k—1) consecutive
occasions (at constant intervals r apart) and
that on the kth occasion some number different

from n will be observed is given by
bn(kr) =Wrt(n; n)[1—W(n;n)]. (365)

On the other hand, in terms of ¢,(k7) we can
give a natural definition to the mean life to the
state of fluctuation » by the equation

T.= i k1o (k7).
k=1

tombining Egs. (365) and (366) we obtain

(366)

Tu=t[1l—Wn;n)] S EW-i(n;n).  (367)

The infinite series in Eq. (367) is readily evaluated
and we find

T

=1—W(n;n).

n

(368)

In an analogous manner we can define the
time of recurrence of the state n by the equation

On=3 krgu(kr),

k=1
where .(k7) denotes the probability that
starting from an arbitrary state which is not n
we shall observe on k—1 successive occasions
states which are not # and on the kth occasion
observe the state #. If

W(Nn; Nn)

(369)

(370)

denotes the probability that from an arbitrary
state #n we shall have a transition to a state
which is also ##, then clearly

VYulkr) = W*'(Nn; Nn)[1—W(Nn; Nn)]. (371)
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Substituting the foregoing expression for ¥ ,(k7)
in Eq. (369) we obtain [cf. Egs. (365) and (368)]

T

Op=—---""— (372)
1—W(Nn; Nn)

We shall now obtain a formula for W(N#n ; Nn).
First of all it is clear that

1—W(Nn; Nn)=W(Nn;n), (373)

where W(Nn; n) is the probability that from an
arbitrary state ## we shall have a transition
to the state n. Now, under equilibrium condi-
tions, the number of transitions from states =n
to the state » must equal the number of transi-
sitions from the state n to states #; accord-
ingly

(1 —=W(n) JW(Nn; n)

=Wmn)[1-Wmn;n)], (374)
where W(#n) is given by Eq. (333). Hence,
1—W(n;n)
W(Nn;n)= W(n)——————T. (375)
—W(n

Combining Egs. (372), (373), and (375) we
obtain

.= T 1—W(n)
"_I—W(n;n) W(n)

(376)

Finally, we may note that between T, and O,
we have the relation

I

- 1—-W(n)

0.=Tx
W(n)

377)

In the next section we shall give a brief ac-
count of the experiments of Svedberg and West-
gren on colloid statistics which have provided
complete confirmation of Smoluchowski’s theory
of density fluctuations which we have developed
in this section. Also, the formulae for T, and 0,
which we have derived have important applica-
tions to the elucidation of the second law of
thermodynamics to which we shall return in §4.

2. Experimental Verification of Smoluchowski’s
Theory: Colloid Statistics

In the experiments of Svedberg, Westgren,
and others on colloid statistics observations are
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made by means of an ultramicroscope on the
numbers of particles in a well-defined element of
volume in a colloidal solution. These observa-
tions, made systematically at constant intervals
7 apart, are secured either by the use of inter-
mittent illumination (Svedberg) or by counting
on the ticks of a metronome (Westgren). The
volumes in which the counts are made are de-
fined either optically by illuminating only plane
parallel layers several microns in thickness
(Svedberg) or mechanically by having the solu-
tion under observation sealed between the ob-
jective of the microscope and a glass plate and
observing with the help of a cardioid condenser
(Westgren). The dimensions of the element of
volume at right angles to the line of sight are
defined directly by limiting the field of observa-
tion (see Figs. 3 and 4).

The colloidal particles describe Brownian
motion and since the intervals of time we are
normally interested in are never less than a few
hundredths of a second we can suppose that the
motions of the particles are governed by the
diffusion equation [cf. Eqgs. (133), (304), and
(306)]

dw/dt=DV4w;

(378)
D=g/B*=kT/mB=FkT/6man.
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For, according to our discussion in Chapter II,
§§2 and 4 the validity of the diffusion equation
requires that we only ignore what happens in
time intervals of order 8! and for colloidal gold
particles of radius @ =50pu this time of relaxa-
tion is of the order of 107°-10-1° second.

From Eq. (378) we conclude that the prob-
ability of occurrence of a particle at r; at time ¢
when it was at r; at time =0 is given by [cf.
Eq. (172)]

exp (— |ra—r1|2/4Dt).  (379)

(4w D)}

On this basis we can readily write down a general
formula for the probability after-effect factor P
introduced in §1. For, by definition, P denotes
the probability that a particle somewhere inside
the given element of volume v (with uniform
probability) at time =0 will find itself outside
of it at time /= 7. Accordingly

" @xDr)% f f exp (= |n—r]¥/ 4D7)dr1dr(=,

where the integration over r, is extended over all
points in the interior of v while that over r; is
extended over all points exterior to v. Alter-
natively, we can also write

1
)
(41I'DT) ;ﬂ rer Yraev

Xexp (— Irl—r2]2/4D1-)dr1dr2, (381)

where, now, the integrations over both 1, and 1,
are extended over all points inside v (indicated
by the symbols riev and rsev).

We thus see that for any geometrically well-
defined element of volume in a colloidal solution
we can always evaluate, in principle, the prob-
ability after-effect factor P in terms of the
physical parameters of the problem, namely, the
geometry of the volume v, the radius a of the
colloidal particles, and the coefficient of viscosity
n of the surrounding liquid. On the other hand,
this factor P can also be determined empirically
from a direct evaluation of the mean square of
the differences in the numbers of particles ob-
served on consecutive occasions in a long se-
quence of observations made at constant in-

tervals 7 apart and using the formula [Eq. (361)]

(A%, =2vP, (382)

where v is the average of all the numbers ob-
served. A comparison of the predictions of the
theory with the data of colloid statistics there-
fore becomes possible. Once P has been de-
termined [either theoretically according to
Eq. (381) or empirically from Eq. (382)] we
can predict the frequency of occurrence, H(n, m),
of the pair (n, m) in the observed sequence of
numbers. For, clearly;

Hn,m)=Wn)Wn;m), (383)

where W(n) is the frequency of occurrence of »n
according to Eq. (333) and W(n; m) is the transi-
tion probability from the state n to the state m
according to Smoluchowski’s formulae (344) and
(345). Again a comparison between the predic-
tions of the theory with the results of observa-
tions becomes possible.

Comparisons of the kind indicated in the
preceding paragraph were first made by Smolu-
chowski himself who used for this purpose the
data provided by Svedberg’s experiments. How-
ever, later experiments by Westgren carried out
with the expressed intention of verifying Smolu-
chowski's theory provide a more stringent com-
parison between the predictions of the theory
and the results of observations. We shall there-
fore limit ourselves to describing the results of
Westgren's experiments only.

Westgren conducted two series of experiments
with the arrangements shown in Figs. 3 and 4.
In the first of the two arrangements (Fig. 3)
the particles under observation are confined to
a long rectangular parallelepiped (see the shaded
portions in Fig. 3). Under the conditions of this
arrangement it is clear that the variation in the
number of particles observed is predominantly
due to diffusion at right angles to the lengthwise
edge. Consequently, the formula for P appro-
priate to this arrangement is [cf. Eq. (381)]

1 1 h
el
h(41rD‘r)’ 0 0

Xexp [ — (x1—x2)2/4D7 Jdx:dxs, (384)

where % denotes the width of the element of
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volume under observation (see Fig. 3). Intro-
ducing 2(Dr)? as the unit of length, Eq. (384)
becomes

1 a a
1-P=— f f exp [ — (b1~ £2)*1dtadts, (385)

where we have written
a=h/2(D1)t (386)
We readily verify that Eq. (385) is equivalent to

2
{—P=

o El
s [Canex (=a), @87
0 0

aTm?

or, after an integration by parts we find

™

2 a
le—'_,‘f exp (—£)d¢

1
+—%[1 —exp (—a?) ]

amT

(388)

For the second of Westgren's arrangements

2111110221112323000
3422121320221022212

The foregoing counts were obtained with the
first of the two experimental arrangements de-

scribed with the following values for the various
physical parameters:

h=6.56u; D=3.95%X1078;
7=1.39sec.; a=49.5uu; (393)
T=290.0°K; »=1.428.

First of all, it is of interest to see how well the
Poisson distribution (333) represents the ob-
served frequencies of occurrence of the different
values of #. Table III shows this comparison for
the sequence of which (392) is an extract. It is
seen that the representation is satisfactory. Also,
the observed mean square deviation for this
sequence is 1.35 while the value theoretically
predicted is » which is 1.43; again the agreement
is satisfactory.

Turning next to questions relating to prob-
ability after-effects we may first note that each
of the observed sequences can be used for several
comparisons. For, by suitably selecting from a
given sequence of sufficient length we can derive
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(Fig. 4) the element under observation is a
cylindrical volume and the variations in the
numbers observed are in this case due to the
diffusion of particles in all directions at right
angles to the line of sight. Accordingly we have

4_ © a T
=— dflflf dEzEzf
o’ Ja 0 0

Xexp (— £12— £242£1& cos 9)dd,  (389)

where

a=r,/2(D71)}, (390)

ro denoting the radius of the cylindrical element
under observation. The integrals in (389) can
be evaluated in terms of Bessel functions with
imaginary arguments and we find

P"—“e‘w"‘[Io(Z\/a)-}-I;(Z\/a)].

Westgren has made several series of counts
with both of his experimental arrangements.
We give below a sample extract from one of his
sequences:

(391)¢

000110010111223345
32223222222133422 (392)

others with intervals between consecutive ob-
servations which are integral multiples of that
characterizing the original sequence. Thus, by
considering only the alternate numbers we ob-
tain a new sequence in which the interval 7
between two observations is twice that in the
original sequence.

As we have already remarked, for any given
sequence, we can compute theoretical values of
P in terms of the physical parameters of the
problem according to Eq. (388) or (391) depend-
ing on the experimental arrangement used. For
the same sequences, we can also, using Eq. (382),
derive values of P from the observed counts

TasLE II1. The Poisson distribution for
Wn). v=1.428.

n= 0 1 2 3 4 5 6 7
Wmons 381 568 357 175 67 28 5§ 2
Wn)eute 380 542 384 184 66 19 § 2

6 The functions e=I1(x) are tabulated in Watson’s
Bessel functions (Cambndge 1922), pp. 698-713.
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from the respective values of the mean square
differences (A%)s. In Tables IV and V we have
made, following Westgren, the comparison
between the values P derived in this manner for
two typical cases. The agreement is satisfactory.
The confirmation of the theory is shown in a
particularly striking manner in Figs. 5 and 6
where a comparison is made between the ob-
served and the theoretical values of P in its
dependence on 7 for different values of & (or 7).

It is now seen that an analysis of the data of
colloid statistics actually provides us with a
means of determining the Avogadro’s constant
N. For, from the mean square difference (A?)y
and the mean value of » (namely ») we can de-
termine P. On the other hand, according to
Eqgs. (380) and (381) P is determined by the

TaBLE IV. Comparison of the probability after-effect
factor P derived from Eq. (388) and the experimental
arrangement of Fig. 3 (Westgren). h=6.56u; a=49.5uu;
T=290.0°K; D=3.95X1078; »=1.428.

(sec.) <N>Av Pobs Pealc
1.39 1.068 0.374 0.394
2.78 1.452 0.513 0.517
4.17 1.699 0.600 0.587
5.56 1.859 0.656 0.634
9.73 2.125 0.744 0.713

13.90 2.265 0.793 0.760

TaBLE V. Comparison of the probability after-effect
factor P derived from Eq. (391) and the experimental
arrangement of Fig. 4 (Westgren). 7o=10.0u; a=63.5uu;
1'=290.1°K; D=3.024X107%; »=1.933.

(sec.) (@a%)ay Pobs Peale
1.50 0.836 0.217 0.238
3.00 1.200 0.310 0.332
4.50 1.512 0.391 0.401
6.00 1.718 0.444 0.456
7.50 1.939 0.502 0.503
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geometry of the volume v only, if the unit of
length is chosen to be 2(Dr)!. Hence, from the
empirically determined value of P we can deduce
a value for this unit of length. In other words, a
determination of the diffusion coefficient D is
possible. But [cf. Eq. (378)]

D=kT/6man=(R/N)(T/6man), (394)
where R is the gas constant and N the Avo-
gadro’s number. Thus N can be determined.
With the second of his two arrangements West-
gren has used this method to determine NMN.
As a mean of 50 determinations he finds NV =6.09
X 10?8 with a probable error of 5 percent; this
is in very satisfactory agreement with other
independent determinations.

Turning next to the frequency of occurrence
H(n, m) of the pair of numbers (n, m) in a given
sequence, we can predict this quantity according
to Eq. (383); these predicted values can again
be compared with those deduced directly from
the counts. Such a comparison has also been
made by Westgren whose results we give in
Table VI.

Finally, we shall consider the experimental
basis for the formulae (368) and (376) for the
mean life and the average time of recurrence of a
state of fluctuation. Using the counts of Sved-
berg, Smoluchowski has made a comparison
between the values of T, and ©, derived em-
pirically from these counts and those predicted
by Egs. (368) and (376). The results of this
comparison are shown in Table VII.

The long average times of recurrence for the
states of large n are to be particularly noted
(see §4 below). These long times are, however,
a direct consequence of the ‘improbable”
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TaBLE VI. The observed and the theoretical frequencies
of occurrence of the pairs (#,m) in a given sequence
(v=1.428; P=0.374). [In each case the top figure gives
the observed number while the bottom figure (italicized),
the number to be expected on the basis of Eq. (383).]

n m=0 1 2 3 4 5 6
0 210 126 35 7 0 1 —
221 119 32 [ 1 — —

1 134 281 117 29 1 1 -
119 262 122 31 5 1 —

2 27 138 108 63 16 3 —
32 122 149 63 15 3 —

3 10 20 76 38 24 6 0
: 0 31 63 56 22 5 1
4 2 2 14 22 13 11 3
1 5 15 22 15 [ 2

5 — 0 2 10 10 1 3
— 1 3 5 6 3 1

nature of these states. For, according to Eq. (376)

O~ (r/Wn))=7(en!/v*) (n>v). (395)

which increases extremely rapidly for large
values of n. For example, the number 7 was
recorded only once in Svedberg’s entire sequence
of 518 counts; but the average time of recurrence
for this state is 11057. Again, the number 17
(for instance) was never observed by Svedberg;
and this is also understandable in view of the
average time of recurrence for this state which is
B1;~1087!

In concluding this discussion of the experi-
mental verification of Smoluchowski’'s theory,
we may remark on the inner relationships that
have been disclosed to exist between the phe-
nomena of Brownian motion, diffusion, and
fluctuations in molecular concentration. But
what is perhaps of even greater significance is
that we have here the first example of a case in
which it has been possible to follow in all its
details, both theoretically and experimentally,
the transition between the macroscopically
irreversible nature of diffusion and the micro-
scopically reversible nature of molecular fluc-
tions. (These matters are further touched upon in
§83 and 4 below.)

3. Probability After-Effects for
Continuous Observation

The theory of density fluctuations as de-
veloped in §1 is valid whenever the physical
circumstances of the problem will permit us to
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introduce the probability after-effect factor P.
It will be recalled that this factor P(7) is defined
as the probability that a particle, initially,
somewhere inside a given element of volume will
emerge from it before the elapse of a time 7.
And, as we have seen in §1, we can express all the
significant facts related to the phenomenon of
the speed of fluctuations in terms of this single
factor P(r). But the theory as developed in §1
applies only when 7 is finite, i.e., for the case
of intermittent observations. We shall now show
how this theory can be generalized to include
the case of continuous observations.
First of all, it is clear that we should expect

P(r)—0 as 7—0. (396)
Hence, according to Eq. (364),
W(n;n)=e?(1—P)*+0O(P?)
(7—0; P—0), (397)
or
W(n;n)=1—(n+v)P(r)+O0(P?)
(r—0; P—0). (398)

From this expression for W(n;n) we can derive
a formula for the probability ¢.(t)Al that the
state n will continue to be under observation
for a time ¢ and that during ¢ and ¢+ At there will
occur a transition to a state different from #.
For this purpose, we divide the interval (0, ¢)
into a very large number of subintervals of
duration At. Then, from the definition of ¢,(¢)At
it follows that

(At =[W(n; n) "> [1=W(n;n)], (399)
or, using Eq. (398),
oa(H)At=[1—(n+»)P(A1)+O(P?) ]*/*¢
X (n+v)P(At).  (400)

This last equation suggests that to obtain con-
sistent results it would be necessary that

P(At)=0(At)  (At—0). (401)

On general physical grounds, we may expect that
this would in fact be the case. But it should not
be concluded that Eq. (401) will be valid for any
arbitrary idealization of the physical problem.
For example, it is not true that P(Af) is O(At) for
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the case of Brownian motions tdealized as a
problem in pure diffusion as we have done in §2.
For, according to Eq. (379)

(|Ar|2)n=6DAt; (402)
and hence, for P defined as in Eq. (380)
P=0[(A8)}] (At—0), (403)

contrary to Eq. (401). However, the rcason for
this disagreement is that the reduction of the
problem of Brownian motions to one in diffusion
can be achieved only when the intervals of time
we are interested in are long compared to the
time of relaxation 8~'. When this ceases to be
the case, as in the present context, Eq. (379) is
no longer true and we should strictly use the
general distribution derived in Chapter II,
§2 [see Eq. (171)]. And, according to Eq. (175)

(lar|Dn=uo|2(at)?, (At—0).  (404)

On the basis of Eq. (404) we shall naturally be
led to a formula for P consistent with (401)
[see Eq. (413) below]. We shall therefore
assume that

P(At) =PoAt+0(A)  (At—0),  (405)

where P, is a constant.
Combining Eqgs. (400) and (405) we have

da(t)At=[1— (n+v) PoAt+O0(A8) JHA

X (n+v)PoAt, (406)
or, passing to the limit A¢=0 we obtain
dn(t)di=exp [— (n+v)Pot](n+v)Podt. (407)

Equation (407) expresses a law of decay of a
state of fluctuation quite analogous to the law of
decay of radioactive substances.

According to Eq. (407), the mean life, T,
of the state # for continuous observation can be
defined by

7.~ [ 160 (408)
0
in other words
To=1/(n+»)P.. (409)

Equation (409) is our present analogue of the
formula (368) valid for intermittent observations.
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Again, as in §1, we can also define the average
time of recurrence of a state of fluctuation for
continuous observation. This can be done by
introducing the probability W(N#n; Nn) and
proceeding exactly as in the discussion of T,.
However, without going into details, it is
evident that the relation (377) between T, and
©, must continue to be valid, also for the case of
continuous observation. Hence

0 - 1 1—W(n)
" 4Py W(n)

(410)

We shall now derive for the case of Brownian
motions, an explicit formula for P, which we
formally introduced in Eq. (405). As we have
already remarked, when dealing with continuous
observation, the idealization of the phenomenon
of Brownian motion as pure diffusion is not
tenable. Instead, we should base our discussion
on the exact distribution function W(r, ¢; ro, uo)
given by Eq. (171) and which is valid also for
times of the order of the time of relaxation 8.
However, since we are only interested in P(A¢f)
for At—0 it would clearly be sufficient to con-
sider the limiting form of the exact distribution
W(r, u,t; 19, up) as {—0. On the other hand
according to Egs. (170)-(175) it follows that
as [—0 we can regard the particles as describing
linear trajectories with a Maxwellian distribu-
tion of the velocities. Hence, in our present
context, P(At) represents the probability that a
particle initially inside a given element of
volume v (with uniform probability) and with a
velocity distribution governed by Maxwell’s
law will emerge from v before a time Af. It is
clear that formally, this is the same as the num-
ber of molecules striking the inner surface of the
element of volume considered in a time A¢ when
the molecular concentration is 1/v.

TaBLE VII. The mean life T, and the average time of
recurrence ®, (P=0.726; »=1.55). (T, and ©, are ex-
pressed in units of 7.)

n Ta(obs.) Tn(calc.) 6. (obs.) Bn(calc.)
0 1.67 1.47 6.08 5.54
1 1.50 1.55 3.13 3.16
2 1.37 1.38 4.11 4.05
3 1.25 1.23 7.85 8.07
4 1.23 1.12 18.6 209
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Now, according to calculations familiar in the
kinetic theory of gases, the number of molecules
with velocities between |u| and |u|+4d|u]
which strike unit area of any solid surface per
unit time and in a direction with a solid angle
dQ at an angle J with the normal to the surface
is given by

N(m/2xkT)} exp (—m|u|2/2kT)

X |u|®cos 9dQd|u|, (411)

where NN denotes the molecular concentration.
Hence,

of m \?!p® p7
P(At)=Al;(27rkT)j; fo exp (—m|ul|2/2kT)

(412)

X |u|3 cos 9dQd|u/,

where ¢ is the total surface area of the element
of volume v. On evaluating the integrals in
Eq. (412) we find that

P(At) = (a/v)(RT/27m)}AL. (413)

Comparing this with Eq. (405) we conclude that
for the case under consideration

Po=(o/v)(kT/27m)?. (414)

The formulae (409) and (410) for the mean
life and the average time of recurrence now take
the forms

T,=w/c(n+v))2am/kT)}, (415)
and
On=/c(n+»))2rm/kT)}
X([1=W(n)]/W(n)). (416)

The case of greatest interest arises when the
average number of particles, », contained in
is a very large number and the values of # con-
sidered are relatively close to v. Then, the
Poisson distribution W(n) simplifies to (see
Appendix IIT)

W(n)=[1/Q2xv) ] exp [— (n—»)*/2v].

On this approximation, Eq. (416) becomes

(417)

© !»wi](i)*ex [(n—v)2/2v]. (418)
n T p [(m—v)2/2v].

g \V

As an illustration of Eq. (418) we shall con-
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TaBLE VIII. The average time of recurrence of a state of
fluctuation in which the molecular concentration in a
sphere of air of radius a will differ from the average value
by 1 percent. T'=300°K; »=3X 109X (47a’/3).

5X1078  3X107% 2.5X107%
1068 108 1

1X10-%
10-1

a(cm) 1 §
O(sec.) 100"

sider, following Smoluchowski, the average time
of recurrence of a state of fluctuation in which
the molecular concentration of oxygen in a
sphere of air of radius ¢ will differ from the
average value by 1 percent. Table VIII gives
0, for different values of a.

It is seen from Table VIII that under normal
conditions, for volumes which are on the edge
of visual perception even appreciable fluctuations
in the molecular concentrations require such
colossal average times of recurrence, that for all
practical purposes the phenomenon of diffusion
can be regarded as an irreversible process. On
the other hand, for volumes which are just on the
limit of microscopic vision, fluctuations in
concentrations occur to such an extent and with
such frequency that there can no longer be any
question of irreversibility : under such conditions
the notion of diffusion very largely loses its
common meaning. For example, it would scarcely
occur to one to illustrate the phenomenon of
diffusion by the experiments of Svedberg and
Westgren on colloid statistics though it is in
fact true that on the average the results are in
perfect accord with the principles of macro-
scopic diffusion [as is illustrated, for example, by
Eq. (356) for (A.)w]. We shall return to these
questions in the following section.

4, On the Reversibility of Thermodynamically
Irreversible Processes, the Recurrence of
Improbable States, and the Limits of Validity
of the Second Law of Thermodynamics

If we formulate the second law of thermo-
dynamics in any of its conventional forms, as, for
example, that ‘“heat cannot of itself be trans-
ferred from a colder to a hotter body” or, that
“arbitrarily near to any given state there exist
states which are inaccessible to the initial state
by adiabatic processes’’ (Caratheodory), or that
‘“the entropy of a closed system must never
decrease,” we, at once, get into contradiction
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with the kinetic molecular theory which demands
the essential reversibility of all processes. Con-
sequently, from the side of “‘dogmatic’’ thermo-
dynamics two principal objections have been
raised in the form of paradoxes and which are
held to vitiate the entire outlook of the kinetic
theory and statistical mechanics. We first state
the two paradoxes.

(2) Loschmidt's Reversibility Paradox

Loschmidt first drew attention to the fact
that in view of the essential symmetry of the
laws of mechanics to the past and the future,
all molecular processes must be reversible from
the point of view of statistical mechanics. This
is in apparent contradiction with the point of
view held in thermodynamics that certain
processes are irreversible.

(¢2) Zermelo's Recurrence Paradox

There is a theorem in dynamics due to Poin-
caré which states that in a system of material
particles under the influence of forces which de-
pend only on the spatial coordinates, a given
initial state” must, in general, recur, not exactly,
but to any desired degree of accuracy, infinitely
often, provided the system always remains in the
finite part of the phase space. (For a proof of this
theorem see Appendix V.) In other words, the
trajectory described by the representative point
in the phase space has a ‘‘quasi-periodic”
character in the sense that after a finite interval
of time (which can be specified) the system will
return to the initial state to any desired degree
of accuracy. Basing on this theorem of Poin-
caré, Zermelo has argued that the notion of irre-
versibility fundamental to macroscopic thermo-
dynamics.is incompatible with the standpoint
of the kinetic theory.

As is well known, Boltzmann has tried to
resolve these paradoxes of Loschmidt and
Zermelo by probability considerations of a
general nature. Thus, on the strength of certain
rough estimates (see Appendix VI), Boltzmann
concludes that the period of one of Poincaré’s
cycles is so enormously long, even for a cubic

7 This is defined by the positions and the velocities of all
the particles, i.e., by the representative point in the phase
space.
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centimeter of gas, that the recurrence of an
initially improbable state (i.e., the reversal to
a state of lower entropy) while not strictly
impossible, is yet so highly improbable that
during the times normally available for observa-
tion, the chance of witnessing a thermodynam-
ically irreversible process is extremely small.

Though Boltzmann’s arguments and conclu-
sions are fundamentally sound there are certain
unsatisfactory features in basing on the period
of a Poincaré cycle. For one thing, the period of
such a cycle depends on how nearly we (arbi-
trarily) require the initial state to recur. Again,
Poincaré’s theorem refers to the return of the
representative point in the 6N-dimensional
phase space (N denoting the number of particles
in the system). Actually, in practice, we should
treat two states of a gas as macroscopically dis-
tinct only if the numbers of molecules (considered
indistinguishable) in the various limits of posi-
tions and velocities are different. Then, during a
Poincaré cycle, the different macroscopically
distinguishable states of the system will ap-
proximately recur a great many times. These
recurrences of the different macroscopically
distinct states, during a given Poincaré cycle,
will be distributed very unequally among the
states: thus, most of the recurrences will occur
for the states of the system which are very close
to what would be described as the thermo-
dynamically ‘“normal state.”” Moreover, it can
also happen that during such a cycle, states
deviating by arbitrarily large amounts from the
normal state are assumed by the system. In
other words, during a Poincaré cycle we shall
pass through many improbable states and indeed
with equal frequency both in the directions of
increasing and decreasing entropy.

Thus, while we may accept Boltzmann's
point of view as fundamentally correct, it would
clearly add to our understanding of the whole
problem if we can explicitly demonstrate in a
given instance how in spite of the essential
reversibility of all molecular phenomena, we
nevertheless get the impression of irreversibility.

Now, as we have already remarked in the
preceding sections, Smoluchowski’s theory of
fluctuations in molecular concentrations allows
us to bridge the gap between the regions of the
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macroscopically irreversible diffusion and the
microscopically reversible fluctuations. Conse-
quently, a further discussion of this problem
will enable us to follow explicitly how in this
particular instance the Loschmidt and the
Zermelo paradoxes resolve themselves.

(a) The resolution of Loschmidt's paradox.—
Using Eqgs. (333), (344), and (345) we readily
verify that

Hn,n+k)=Wn)W(n;n+k)

=Wn+k)Wn+k;n)=H(n+k, n). (419)

The quantity on the left-hand side in the fore-
going equation represents the frequency of
occurrence of the numbers » and #+k% on two
successive occasions in a long sequence of ob-
servations; similarly, the quantity on the right-
hand side gives the frequency of occurrence of
the pair (n+k, n). It therefore follows that under
equilibrium conditions, the probability, that in
a given length of time we observe a transition
from the state n to the state m is equal to the
probability that (in an equal length of time)
we observe a transition from the state m to the
state n. It is precisely the symmetry between
the past and the future which guarantees this
equality between H(n;m) and H(m;n). A
glance at Table VI shows that this is amply
confirmed by observations. [It may be further
noted that, in accordance with Eq. (419) the
numbers in italics on the opposite sides of the
principal diagonal are equal.] All this, is, of
course, in entire agreement with Loschmidt’s
requirements.

On the other hand, it is also evident from
Table VI, that after a relatively large number
like 5, 6, or 7 a number much smaller, generally
follows; in other words, the probability that a
number n(>>v) will further increase on the next
observation is very small indeed. This circum-
stance illustrates how molecular concentrations
differing appreciably from the average value will
almost always tend to change in the direction
indicated on the macroscopic notions concerning
diffusion [cf. Eq. (356)]. This corresponds
exactly to one of Boltzmann’s statements that
the negative entropy curve almost always
decreases from any point. However this may be,
in course of time, an abnormal initial state will

CHANDRASEKHAR

again recur as a consequence of fluctuations,
and we shall now see how in spite of this possi-
bility for recurrence, the apparently irreversible
nature of the phenomenon comes into being.

(b) The resolution of Zermelo's paradox.—Let
us first consider the case of intermittent observa-
tions. As we have already remarked in §2, the
number 17 never occurred in one of Svedberg’s
sequences for which » had the value 1.55. But
the average time of recurrence for this state
[according to Eq. (376)] is 10¥r; and since

=1/39 min., for the sequence considered,
©~500,000 years. Hence, the diffusion from the
state =17 will have all the appearances of an
irreversible process simply because the average
time of recurrence is so very long compared to
the times during which the system is under
observation.

Turning next to the case of continuous ob-
servations, we shall return to the example con-
sidered in §3. As we have seen (cf. Table VIII)
the average time of recurrence of a state in
which the number of molecules of oxygen
contained in a sphere of radius ¢ 2 5X1075 cm
(and T=300°K and »=3X10" cm™3) will
differ from the average value by 1 percentis very
long indeed (© > 10°8 seconds). The factor which
is principally responsible for these large values
for ® is the exponential factor in Eq. (418).
Accordingly, we may say, very roughly, that
the second law of thermodynamics is valid only
for those diffusion processes in which the equal-
ization of molecular concentrations which take
place are by amounts appreciably greater than
the root mean square relative fluctuation (namely,
[{|n—v|®a/v? ] =»"1). We have thus completely
reconciled (at any rate, for the processes under
discussion) the notion of irreversibility which is
at the base of thermodynamics and the essential
reversibility of all molecular phenomena de-
manded by statistical mechanics. This recon-
ciliation has become possible only because we
have been able to specify the limits of validity
of the second law.

Quite generally, we may conclude with Smolu-
chowski that a process appears irreversible (or
reversible) according as whether the initial state is
charactertzed by a long (or short) average time of
recurrence compared to the times during which the
system is under observation.
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5. The Effect of Gravity on the Brownian Motion: The Phenomenon of Sedimentation

The study of the effect of gravity on the Brownian motion provides an interesting illustration of the
use to which Smoluchowski’s equation [Eq. (312)]

(dw/at) =div, (¢872 grad- w— KB 'w) (420)

can be put. In Eq. (420) K represents the acceleration caused by the external field of force. If the
external field is that due to gravity, we can write

Kx=0; KUZO: Kz:_(l_(PO/p))gr (421)

provided the coordinate system has been so chosen that the z axis is in the vertical direction. In
Eq. (421), g denotes the value of gravity, p the density of the Brownian particle and po(<p) that of
the surrounding fluid. Hence, for the case (421), Eq. (420) becomes

(dw/at) = (g/B*) V*w+ (1—(po/p)) (g/B) (dw/03). (422)

It is seen that Eq. (422) is of the same general form as Eq. (126). Accordingly, we can interpret
the phenomenon described by Eq. (422) as a process of diffusion in which the number of particles
crossing elements of area normal to x, y, and z directions, per unit area and per unit time, are given,
respectively, by [cf. Eq. (127)]

—D(0w/dx), —D(dw/dy), (423)
and
—D(0w/dz) — cw, (424)
where
D=(q/B)=(RT/mB); c=(1—"(po/p))(g/B)- (425)

Thus, while the diffusion in the (x, y) plane takes exactly as in the field free case, the situation in the
z direction is modified. If we, therefore, limit ourselves to considering only the distribution in the
z direction, of particles uniformly distributed in the (x, y) plane, the appropriate differential equa-
tion is

ow dw  dw

=D, (426)

ot 922 9z

Let us now suppose that the particle is initially at a height 2z, measured from the bottom of the
vessel containing the solution. Then, the probability of occurrence of the various values of z at
later times will be governed by the solution of Eq. (426) which satisfies the boundary conditions

w—8(z—30) as (—0, (427)
D(dw/dz)+cw=0 at z=0 forall ¢t>0.

The second of two foregoing boundary conditions arises from the requirement that no particle shall
cross the plane =0 representing the bottom of the vessel [cf. Eq. (424) .

To obtain the solution of Eq. (426) satisfying the boundary conditions (427), we first introduce the
following transformation of the variable [cf. Eq. (128)]

w=Ul(z, t) exp [_ECB(Z—ZO) —-:—Dt]. (428)

Equation (426) reduces to the standard form
(0U/ot)=D(82U/dz%) (429)

while the boundary conditions (427) become
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||\
: 2
3
7
Fic. 7. Fic. 8.
U—bd(z—3z0) as t—0, (430)
D@U/3z)+(1/2)cU=0 at z=0 forall (>0.

Solving Eq. (429) with boundary conditions of the form (430) is a standard problem in the theory of
heat conduction. We have

U= {exp [ — (z—20)2/4Dt |+exp [ — (z+30)%/4Dt ]}
2(wDp)}

@

c (a+2)? c(a—20)
+-— f exp [ — + ]da. (431)
2D(xDt)} J ., 4Dt 2D

After some elementary transformations, Eq. (431) takes the form
1
U=
2(wDt)}

texp [ — (z—20)*/4Dt]+exp [ — (z+20)*/4Dt ]}
c [c% c(z+20)

+ exp |——
Dy/7 4D 2D

jlfm exp (—x¥dx. (432)
z+20—ct

2(Dr)¥

Returning to the variable w we have [cf. Eq. (428) ]

w(t, 2; 20) =2» {exp [ — (z—20)2/4Dt]+exp [ — (3+20)2/4Dt]}

wDi)}

c c? c ©
Xexp [“"“(Z‘Z )— t]-i— e—“/Df exp (—x¥dx  (433)
20 " 4D | Dy/x st sv—ct

2(Dt)}

which is the required solution. In Fig. 7 we have illustrated according to Eq. (433) the distributions
w(z, 1; 20) for a given value of z, and various values of ¢.

If we suppose that at time {=0 we have a large number of particles distributed uniformly in the
plane z=z, then in the first instance diffusion takes place as in the field free case (curves 1 and 2).
However, gravity makes itself felt very soon (curves 3, 4, and 5) and the maximum begins to be
displaced to lower values of z with the velocity ¢; at the same time, the maximum becomes flatter
on account of the random motions experienced by the particles. Once the probability of finding
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particles near enough to the bottom of the vessel becomes appreciable, the curves again begin to
rise upwards (curves 5 and 6) on account of the reflection which the particles suffer at z=0; and,
finally as t— » we obtain the equilibrium distribution

w(z, ©;2)=(c/D)e=P. (434)
Since [cf. Eq. (425)]
(¢/D)=(1—(po/p))(mg/kT), (435)

we see that the equilibrium distribution (434) represents simply the law of isothermal atmospheres in
its standard form.

The example we have just considered provides a further illustration of a case to which the con-
ventional notions concerning entropy and the second law of thermodynamics cannot be applied.
For the state of maximum entropy for the system consisting of the Brownian particles and the sur-
rounding fluid, is that in which all the particles are at z=0; and, on strict thermodynamical principles
we should conclude that with the continued operation of dissipative forces like dynamical friction,
the state of maximum entropy will be attained. But according to Eq. (434), as t—« though the
state of maximum entropy z=0 has the maximum probability, it is not true that the average value
of the height at which the particles will be found is also zero. Actually, for the equilibrium distribu-
tion (434), we have

(= (D/c)=(kT/mg)[p/(0—po) ], (436)

which is the height of the equivalent homogeneous atmosphere. Moreover, even if the particles were
initially at =0, they will not continue to stay there. For, setting z0=0 in Eq. (433) we find that

0

w(z, t; 0)=(1/(xD#)?) exp [ — (z+ct)2/4Dt ]+ (c/D\/1r)e—”/Djv exp (—x?)dx. (437)

‘5 —ct.

2(Dey}
Equation (437) shows that as #— « we are again led to the equilibrium distribution (434) (see Fig. 8).
Hence, the particles do a certain amount of mechanical work at the expense of the internal energy of the
surrounding fluid; this is of course contrary to the strict interpretation of the second law of thermo-
dynamics. The average work done in this manner is given by [if we use Eq. (436)]

(Aw=m(1—(po/p))gz=kT, (438)
per particle. Hence, on the average there is a decrease in entropy of amount k per particle:
<S>Av = Sm ax Nky (439)

where N denotes the number of Brownian particles. However, as Smoluchowski has pointed out,
this work done at the expense of the internal energy of the surrounding fluid cannot be utilized to
run a heat engine with an efficiency higher than that of the Carnot cycle.

We may further note that except for values of z<D/c, a particle has a greater probability to
descend than it has to ascend. As z—0 the converse is true. We may therefore say that the tendency
for the entropy to increase (almost always) for particles at 22> D/c is compensated by the tendency
of the entropy to decrease for particles very near z=0; so that, on the average, a steady state is
maintained. Of course, we have a finite probability for particles, occasionally to ascend to very
great heights; but in accordance with the conclusions of §4 we should expect that the average time
of recurrence for such abnormal states must be very long indeed.

6. The Theory of Coagulation in Colloids

Smoluchowski discovered a very interesting application of the theory of Brownian motion in the
phenomenon of coagulation exhibited by colloidal particles when an electrolyte is added to the
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solution. Smoluchowski's theory of this phenomenon is based on a suggestion of Zsigmondy that
coagulation results as a consequence of each colloidal particle being surrounded (on the addition of
an electrolyte) by a sphere of influence of a certain radius R such that the Brownian motion of a
particle proceeds unaffected only so long as no other particle comes within its sphere of influence
and that when the particles do come within a distance R they stick to one another to form a single
unit. We are not concerned here with the physico-chemical basis for Zsigmondy’s suggestion except
perhaps to remark that the spheres of influence are supposed to originate in the formation of electric
double layers around each particle; we are here interested only in the application of the principles
of Brownian motion which is possible on the acceptance of Zsigmondy's suggestion. However, we
may formulate somewhat more explicitly the problem we wish to investigate:

We imagine that initially the colloidal solution contains only single particles all similar to one
another and of the same spherical size. We now suppose that at time =0 an (appropriate) electrolyte
is added to the solution in such a way that the resulting electrolytic concentration is uniform through-
out the solution. The particles are now supposed to be all instantaneously surrounded by spheres of
influence of radius R. From this instant onwards, each particle will continue to describe the original
Brownian motion only so long as no other particle comes within its sphere of influence. Once two
particles do approach to within this distance R they will coalesce to form a ‘‘double particle.”” This
double particle will also describe Brownian motion but at a reduced rate consequent to its increased
size. This double particle will, in turn, continue to remain as such only so long as it does not come
within the appropriate spheres of influence of a single or another double particle: when this happens
we shall have the formation of a triple or a quadruple particle; and, so on. The continuation of this
process will eventually lead to the total coagulation of all the colloidal particles into one single mass.

The problem we wish to solve is the specification of the concentrations v, v, vs, v4, - - -, of single,
double, triple, quadruple, etc., particles at time ¢ given that at time t=0 there were »o(=v:[0])
single particles.

As a preliminary to the discussion of the general problem formulated in the preceding paragraph
we shall first consider the following more elementary situation:

A particle, assumed fixed in space, is in a medium of infinite extent in which a number of similar
Brownian particles are distributed uniformly at time ¢t=0. Further, if the stationary particle is
assumed to be surrounded by a sphere of influence of radius R what is the rate at which particles
arrive on the sphere of radius R surrounding the fixed particle?

We shall suppose that the stationary particle is at the origin of our system of coordinates. Then,
in accordance with our definition of a sphere of influence, we can replace the surface |r| =R by a
perfect absorber [cf. I, §5, see particularly Eq. (115)7]. We have therefore to seek a solution of the
diffusion equation [cf. Egs. (173) and (306) ]

(0w/dt) =DVw; D=(g/")=(kT/6man), (440)
which satisfies the boundary conditions

w=yp=constant, at t=0, for |[r|>R, } (441)
w=0 at |r|=R for ¢>0.
In the first of the two foregoing boundary conditions » denotes the average concentration of the
particles exterior to |r| =R at time {=0.

Since w can depend only on the distance » from the center, the form of the diffusion equation
(440) appropriate to this case is

(8/81) (rw) = D(8%/8r?) (rw). (442)

The solution of this equation satisfying the boundary conditions (441) is
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R 2R pu—Bpont
w= v[l -4 f exp (—x2)dx]. (443)
L r r/rJdy

From Eq. (443) it follows that the rate at which particles arrive at the surface |r| =R is given by
[cf. Eq. (117)]

Jw
41rD(rzg— = 41rDRv( 14+ ) . (444)
r =

(wDt)}

Equation (444) gives the rate at which particles describing Brownian motion will coalesce with a
stationary particle surrounded by a sphere of influence of radius R. Suppose, now, that the particle
we have assumed to be stationary is also describing Brownian motion. What is the corresponding
generalization of (444)? In considering this generalization we shall not suppose that the diffusion
coefficients characterizing the two particles which coalesce to form a multiple particle are neces-
sarily the same. Under these circumstances we have clearly to deal with the relative displacements
of the two particles; and it can be readily shown that the relative displacements between two particles
describing Brownian motions independently of each other and with the diffusion coefficients D, and
D, also follows the laws of Brownian motion with the diffusion coefficient Di,=D,+D,. For, the
probability that the relative displacement of two particles, initially, together at =0, lies between
r and r+dr is clearly

+w
W(r)dr= drf Wi(ry) Wo(ri+1)dr,

-0

(445)
a [ exp (= 1n 124D exp (= Iribr /4D
= exp (— |7 t) exp (— |ri+7 t)dr
(xDut) (4xD )} J_, YR SR AT wen
or, as may be readily verified [cf. the remarks following Eq. (62)]
W(r)=(1/[47(D1+D3)t]}) exp (— |1 |?/4(D1+D2)t). (446)

On comparing this distribution of the relative displacements with the corresponding result for the
individual displacements [see for example Eq. (172) ] we conclude that the relative displacements do
follow the laws of Brownian motion with the diffusion coefficient (D,+D,).

Thus, the required generalization of Eq. (444) is

[r<D1+D2>tJ*) '

More generally, let us consider two sorts of particles with concentrations v; and »;. Let the respec-
tive diffusion coefficients be D; and D;. Further, let R;; denote the distance to which two particles
(one of each sort) must approach in order that they may coalesce to form a multiple particle. Then,
the rate of formation of the multiple particles by the coagulation of the particles of the kind consid-
ered is clearly given by

Rix
J.'+kdt=41rD,'kR.'kv.'Vk(1+ )dl (448)
(WD”J)*
where we have written
Dik=D,‘+Dk. (449)

In our further discussions, we shall ignore the second term in the parenthesis on the right-hand side
of Eq. (447); this implies that we restrict ourselves to time intervals A>R?/D. In most cases of
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practical interest, this is justifiable as R2/D~10—2—10"* second. With this understanding we can
write

]i+kdt£41rD,'kR,'kllivkdt. (450)

Using Eq. (450) we can now write down the fundamental differential equations which govern the
variations of vy, vg, - - -, v, - - - (of single, double, - - -, k-fold, - - -,) particles with time:

Thus, considering the variation of the number of k-fold particles with time, we have in analogy
with the equations of chemical kinetics ’

dllk ©
=47r(% z V;VjDinij—llk Z VjijRkj) (k= 1, . ) (451)

dt i+i=k =1

In this equation the first summation on the right-hand side represents the increase in v, due to the
formation of k-fold particles by the coalescing of an ¢-fold and a j-fold particle (with 74 j=£k), while
the second summation represents the decrease in »; due to the formation of (k+j)-fold particles in
which one of the interacting particles is k-fold.

A general solution of the infinite system of Eq. (451) which will be valid under all circumstances
does not seem feasible. But a special case considered by Smoluchowski appears sufficiently illustra-
tive of the general solution.

First, concerning Ry, the assumption is made that

R.‘kz%(er'Rk), (452)

where R; and R, are the radii of the spheres of influence of the i-fold and the k-fold particles. We can,
if we choose, regard the assumption (452) as equivalent to Zsigmondy’s suggestion concerning the
basic cause of coagulation.

Again, according to Eq. (440), the diffusion coefficient is inversely proportional to the radius of the
particle; and on the basis of experimental evidence it appears that the radii of the spheres of in-
fluence of various multiple particles are proportional to the radii of the respective particles. We there-
fore make the additional assumption that

D.R;=DR (i=1, ---), (453)

where D and R denote, respectively, the diffusion coefficient and the radius of the sphere of influence
of the single particles.
Combining Eqs. (449), (452), and (453) we have

D{kRik= %(D,-f-Dk) (R1+Rk) = lZ)IQ(R,'_I-f-RIC—l) (R,+Rk) = %DR(R¢+RIC)2R{-1R1{“1. (454)

Finally, for the sake of mathematical simplicity we make the (not very plausible) assumption that

R;=R,. (455)
Thus, with all these assumptions
DaRa=2DR. (456)
In view of (456), Eq. (451) becomes
dv;, ©
—=87rDR(% Z ViV;— Vk Z Vj) (k= 1, .. ) (457)
dt i+i=k =1
If we now let
r=4rDRt, (458)
Eq. (457) takes the more convenient form
dl/k hd
—= > vy;—2v, 2 v; (k=1,--:). (459)

dr  iti=k =1
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From Eq. (459) we readily find that

0

d © © o
E( Z =3 3 viv;—2 > ViVj,

k=1 =1 j=1 k=1 j=1

(460)
=—(X v
k=1
or,
© Yo
2 = ) (461)
k=1 1+vor

remembering that at t=0, 3 vi=v,.
Using the integral (461) we can successively obtain the solutions for »i, vs, etc. Thus, considering
the equation for »; we have [cf. Eq. (459)]

dvi/dt=—2v; Y vi=—2vo/(14+ver); (462)
k=1
in other words,
4]

T (tron)?

again using the boundary condition that »;=v, at {=0. Proceeding in this manner we can prove
(by induction) that

(463)

V1

vi=vo (vor) ¥ Y/ (14 wor)*1] (k=1,2, ---). (464)

In Fig. 9 we have illustrated the variations of Y_w, v1, vs, - - - with time. We shall not go into the
details of the comparison of the predictions of this theory with the data of observations. Such com-
parisons have been made by Zsigmondy and others and the general conclusion is that Smoluchowski’s
theory gives a fairly satisfactory account of the broad features of the coagulation phenomenon.

7. The Escape of Particles over Potential Barriers

As a final illustration of the application of the principles of Brownian motion we shall consider,
following Kramers, the problem of the escape of particles over potential barriers. The solution to this
problem has important bearings on a variety of physical, chemical, and astronomical problems.

The situation we have in view is the following:

Limiting ourselves for the sake of simplicity to a one-dimensional problem, we consider a particle
moving in a potential field B(x) of the type shown in Fig. 10; more generally, we may consider an
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ensemble of particles moving in the potential field B (x) without any mutual interference. We suppose
that the particles are initially caught in the potential hole at A. The general problem we wish to
solve concerns the rate at which particles will escape over the potential barrier in consequence of
Brownian motion.

In the most general form, the solution to the problem formulated in the foregoing paragraph is
likely to be beset with considerable difficulties. But a special case of interest arises when the height
of the potential barrier is large compared to the energy of the thermal motions:

mQ>kT. (465)

Under these circumstances, the problem can be treated as one in which the conditions are quasi-
stationary. More specifically, we may suppose that to a high degree of accuracy a Maxwell-Boltzmann
distribution obtains in the neighborhood of 4. But the equilibrium distribution will not obtain for all
values of x. For, by assumption, the density of particles beyond C is very small compared to the
equilibrium values; and in consequence of this there will be a slow diffusion of particles (across C)
tending to restore equilibrium conditions throughout. If the barrier were sufficiently high, this
diffusion will take place as though stationary conditions prevailed.

Assuming first that we are interested only in time intervals that are long compared to the time of
relaxation 87! we can use Smoluchowski’'s Eq. (312). Under stationary conditions, Smoluchowski’s
equation predicts a current density j given by [cf. Eq. (316)]

A

B
j-f BemB1kTds = (kT /m)wemB/kT (466)
A

B

where, in the integral on the right-hand side, the path of integration of s from A4 to B is arbitrary.
In our present case § is a constant and, since further we are dealing with a one-dimensional problem,

we can express Eq. (466) in the form
4
qpemB(2) kT

B

jE—— (467)
mB pB
femmx)/krdx
4

Now, the number of particles »4 in the vicinity of 4 can be calculated ; for, in accordance with our
earlier remarks we shall be justified in assuming that the Maxwell-Boltzmann distribution

dva=wae "By (468)
is valid in the neighborhood of 4. If we now further suppose that
B=lwa2x?  (wa=constant; x~0), (469)
we obtain from Eq. (468)
VAzwAf+m exp (—mwa*x?/2kT)dx, (470)

-0

where the range of integration over x has been extended from — « to + « in view of the fact that th
main contribution to the integral for »4 must arise only from a small region near x=0. Hence,

va=(wa/wa) 2nkT/m)t. (47
Returning to Eq. (467), we can write with sufficient accuracy [cf. Eq. (469)]:

kT {
JE—wa f
mpB A

B

-1
e"‘“"”dxl . (47
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In writing Eq. (472) we have assumed that the density of particles near B is very small: this is true
to begin with anyway.

From Eqgs. (471) and (472) we directly obtain for the rate at which a particle, initially caught in
the potential hole at 4, will escape over the barrier at C, the expression

7 way RT N\Y pB -1
p=__=_.(———) f emTg | (473)
va B \2mm A

The principal contribution to the integral in the curly brackets in the foregoing equation arises
from only a very small region near C [on account of the strong inequality (465)]. The value of the
integral will therefore depend, very largely, only on the shape of the potential curve in the immediate
neighborhood of C. If we now suppose that near x=x¢, B(x) has a continuous curvature, we may

write
B2 —2we(x—xc)? (we=constant; x~xc¢). (474)

On this assumption, to a sufficient degree of accuracy we have

+o0

B
e"'%“‘rdxﬁe’"q’”f exp [ —mwc(x—x¢)2/2kT Jdx,
j; ¢ pL c( c ] 475)

=™ T(2nk T /mwc?)?.
Combining Egs. (473) and (475) we obtain
P=(wawc/2nf)e ™RI*T, (476)

which gives the probability, per unit time, that a particle originally in the potential hole at 4, will
escape to B crossing the barrier at C.

The formula (476) has been derived on the basis of Eq. (467) and this implies, as we have already
remarked, that we are ignoring effects which take place in intervals of the order 8~1. Alternatively,
we may say that the validity of Eq. (476) depends on how large the coefficient of dynamical friction
B is: if B were sufficiently large, the formula (476) for P may be expected to provide an adequate
approximation [see Eqgs. (507) and (508) below]. On the other hand, if this should not be the case,
we must, in accordance with our remarks in Chapter I1, §4, subsection (v7), base our discussion of the
generalized Liouville Eq. (249) in phase space; and in one dimension this equation has the form

W oW oW 214 >w
—+tu—+K—=pu—+pW+q¢—, (477)
ot dx ou ou ou?
where it may be recalled that
g=6(kT/m) ;. K=—(0%/0x). (478)

In II, §5 we have shown that the Maxwell-Boltzmann distribution identically satisfies Eq. (249).
Accordingly,
W=Cexp [ — (mu2+2m®B)/2kT], (479)

where C is a constant, satisfies Eq. (477). However, under the conditions of our problem the equi-
librium distribution (479) cannot be valid for all values of x; for, if it were, there would be no diffu-
sion across the barrier at C and the conditions of the problem would not be met. On the other hand,
we do expect the distribution (479) to be realized to a high degree of accuracy in the neighborhood
of 4. We, therefore, look for a stationary solution of Eq. (477) of the form

W=CF(x, u) exp [ —m(u+2%)/2kT], (480)
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where F(x, #) is very nearly unity in the neighborhood of x=0. Since we have further supposed that
the density of particles in the region B is quite negligible, we should also require that F(x, #)—0 for
values of x appreciably greater than x=x¢. We may express these conditions formally in the form

F(x,u)=1 at x~0,

F(x, u)=20 for x>xc. (481)

We shall now show how such a function F(x, #) can be determined.

First of all it is evident that for the purposes of determining the rate of escape of particles across
the barrier at C it is particularly important to determine F accurately in this region. Assuming that
in the vicinity of C, 8B has the form (474) and that stationary conditions prevail throughout, the
equation for W in the neighborhood of x=x¢ becomes [cf. Eq. (477)]:

uf-vz+wc’XipZ=ﬁu?LV+ﬁW+qﬂ, (482)
X ou ou ou?
where for the sake of brevity, we have used
X=x—xc. (483)
According to Eqs. (474), (480), and (483) the appropriate form for W valid in the region C, is
W=Cem*TF(X, u) exp [ —m(u?—wc?X?)/2kT]. (484)
Substituting for W according to this equation in Eq. (482), we obtain
oF oF @*F oF
ug—i—wcz}(;:g;‘;—ﬂu;‘. (485)

It is seen that F=constant satisfies this equation identically: this solution corresponds of course to
the equilibrium distribution. However, the solution of Eq. (485) which we are seeking must satisfy
the boundary conditions [cf. Eq. (481)]

F(X,u)—»1 as X—o— o,

FX,u)—0 as X—+ =, (486)
Assume for F the form
F=Fu—aX)=F(f) (say), (487)
where a is, for the present, an unspecified constant. Substituting this form of Fin Eq. (485) we obtain
[(@-8) X }(E‘ 9——sz (488)
—[(e—Bu—w = .
d¢ dg
In order that Eq. (488) be consistent it is clearly necessary that [cf. Eq. (487)]
[we?/(a—B)]=a; (489)
and in this case Eq. (488) becomes
(a—8) i q——(pF (490)
—(a— = .
Pt
Equation (490) is readily integrated to give
£
F=Fu [ exp [-@-p)/2020%, (491)

where Fy is a constant. On the other hand, according to Eq. (489) a is the root of the equation
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@ —af—wc=0; (492)
ie.,
a=(8/2) £([*/4]+wc)} (493)
If we choose for a the pesitive root, then
a—B=([p*/4]+wct—(8/2) (494)

is also positive, and as we shall show presently, the solution (491) leads to an F which satisfies the
required boundary conditions (486). For, by choosing

Fo=[(a—B)/27q}, (495)

and setting the lower limit of integration in Eq. (491) as — « we obtain the solution

a—p PS4
Fe (TW) Lexp[—w—ﬁ)wijds, (496)

which satisfies the conditions
F—1 as ¢(—>+«o; F-0 as §(—>— . (497)

On the other hand, since ¢=u—aX and a(=[(8/2)*+wc?]}+[8/2]) is positive, -+ © or — = is
the same as X— — o or + = ; in other words, the solution (496) for F satisfies the necessary boundary
conditions (486).

Combining Eqs. (484) and (496) we have, therefore, the solution

13
W=C[(a—B)/2rgle T exp [ —m(u*— wc’X?)/2kT] f exp [—(a—B)#/2q1dt.  (498)
Equation (498) is, of course, valid only in the neighborhood of C.
In the vicinity of 4 we have the solution [cf. Egs. (469) and (479)]
W=_C exp [—mu?+ws®x?)/2kT]. (499)
Accordingly, the number of particles, v, in the potential hole at 4 is given by
+ <+
uﬁCf f exp [ —m(u?+ws?%?)/2kT Jdxdu,
— Vo (500)
=C(27kT/mwa4).

(This equation will enable us to normalize the distribution in such a way so as to correspond to one
particle in the potential hole: for this purpose we need only choose C=mws/27kT.)
Now, the diffusion current across C is given by

+o
j=f W(X =0; u)udu, (501)
or, using the solution (498), we have

+o u
j=C[(a——/3)/21rq:\*e""°”‘7'f duu exp (—mu’/ZkT)f dt exp [—(a—B)£/2q]. (502)

After an integration by parts, we find

+o
j=ClL(a—B)/20q kT /m)e—mair f exp { —w2[m/ 26T+ (a—B)/24]}du. (503)

—00
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But [cf. Eq. (478)]

(m/2kT)+[(a—

From Egs. (503) and (504) we now obtain

j=CkT/m)[(a—
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Hence, the rate of escape of particles across C is given by

P=(G/va)=(wa/27)[(a—B)/a)lemR/*T,

B8)/2q]=(a/2q). (504)
B)/alle~mQIkT, (505)
(506)

or, substituting for ¢ and a—p according to Egs. (493) and (494), we find after some elementary

reductions, that

If

P=(wa/2m0c)([B/4+wct ]t —[B/2])emR/*T,
B>2w¢

(507)
(508)

we readily verify that our present “exact” formula for P reduces to our earlier result (476) derived
on the basis of the Smoluchowski equation. But (507) now provides in addition the precise condition
for the approximate validity of (476). On the other hand, for 8—0 we have

P=(wa/2m)e T

(8—0). (509)

This last formula for P valid in the limit of vanishing dynamical friction, corresponds to what is
sometimes called the approximation of the transition-state method.

CHAPTER IV

PROBABILITY METHODS IN STELLAR DYNAMICS:
THE STATISTICS OF THE GRAVITATIONAL
FIELD ARISING FROM A RANDOM DISTRIBU-
TION OF STARS

1. Fluctuations in the Force Acting on a Star;
The Outline of the Statistical Method

One of the principal problems of stellar
dynamics is concerned with the analysis of the
nature of the force acting on a star which is a
member of a stellar system. In a general way, it
appears that we may broadly distinguish be-
tween the influence of the system as a whole and
the influence of the immediate local neighbor-
hood; the former will be a smoothly varying
function of position and time while the latter
will be subject to relatively rapid fluctuations
(see below).

Considering first the influence of the system
as a whole, it appears that we can express it in
terms of the gravitational potential LB(r;¢) de-
rived from the density function »n(r, M ; t) which
governs the average spatial distribution of the
stars of different masses at time ¢. Thus,

B(r; ) = _Gf+°°f°° Mn(ry, M0 )

Mdn,
[1’1—7

(510)

where G denotes the constant of gravitation.
The potential B(r; t) derived in this manner may
be said to represent the ‘‘smoothed out’ distri-
bution of matter in the stellar system. The force
per unit mass acting on a star due to the “system
as a whole’’ is therefore given by

K= —grad B(r; ). (511)

However, the fluctuations in the complexion
of the local stellar distribution will make the
instantaneous force acting on a star deviate
from the value given by Eq. (511). To elucidate
the nature and origin of these fluctuations, we
surround the star under consideration by an
element of volume o, which we may suppose is
small enough to contain, on the average, only a
relatively few stars. The actual number of
stars, which will be found in ¢ at any given
instant, will not in general be the average num-
ber that will be expected to be in it, namely o#;
it will be subject to fluctuations. These fluctua-
tions will naturally be governed by a Poisson
distribution with the variance oz [see Eq. (333)].
It is in direct consequence of this changing
complexion of the local stellar distribution that
the influence of the near neighbors on a star is
variable. The average period of such a fluctua-
tion is readily estimated: for the order of
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magnitude of the time involved is evidently that
required for two stars to separate by a distance
equal to the average distance D between the
stars (see Appendix VII). We may, therefore,
expect that the influence of the immediate neigh-
borhood will fluctuate with an average period of
the order of

=D/ VY,

where (|V|2a} denotes the root mean square
relative velocity between two stars.

In the neighborhood of the sun, D~ 3 parsecs,
{|V|%at~50 km/sec. Hence

T (near the sun)*=6X10* years.

(512)

(513)

When we compare this time with the period of
galactic rotation (which is about 2X10® years)
we observe that in conformity with our earlier
remarks, the fluctuations in the force acting on a
star due to the changing local stellar distribution
do occur with extreme rapidity compared to the
rate at which any of the other physical param-
eters change. Accordingly we may write for the
force per unit mass acting on a star, the ex-
pression

F=K(r;)+F(), (514)

where K is derived from the smoothed out dis-
tribution [as in Egs. (510) and (511)] and F
denotes the fluctuating force due to the near
neighbors. Moreover, if At denotes an interval
of time long compared to (512), we may write

FAt= KAt+8(t+At; 0), (515)

where
t+At

SUFAL £) = f F(®)dt (AL>T). (516)

Under the circumstances stated (namely, Ai>>T)
the accelerations 8(¢+Af; £) and 8(1+42A¢; t+Al)
suffered during two successive intervals (t+A¢, t)
and (¢+42A¢, t+At) will not be expected to show
any correlation. We may, therefore, anticipate
the existence of a definite law of distribution
which will govern the probability of occurrence
of the different values of 8(¢+At; ). We thus
see that the acceleration which a star suffers
during an interval A>T can be formally ex-
pressed as the sum of two terms: a systematic
term KAt due to the action of the gravitational
field of the smoothed out distribution, and a
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stochastic term &(t+At;1) representing the in-
fluence of the near neighbors. Stated in this
fashion, we recognize the similarity® between our
present problems in stellar dynamics and those
in the theory of Brownian motion considered in
Chapters II and III. One important difference
should however be noted: Under our present
circumstances it is possible, as we shall presently
see, to undertake an analysis of the statistical
properties of F(¢) and $(¢t+At¢;t) based on first
principles and without appealing to any “intui-
tive” or a priori considerations as in the dis-
cussions of Brownian motion [see the remarks at
the end of II, §1 and also those following
Eq. (318)].

We shall now outline a general method which
appears suitable for analyzing the statistical
properties of F.

The force F acting on a star, per unit mass, is
given by

M;
F=G Y —r,
Ak

(517)

where M, denotes the mass of a typical “‘field”
star and r; its position vector relative to the
star under consideration; further, in Eq. (517)
the summation is to be extended over all the
neighboring stars. The actual value of F given
by Eq. (517) at any particular instant of time
will depend on the instantaneous complexion
of the local stellar distribution; it is in conse-
quence subject to fluctuations. We can therefore
ask only for the probability of occurrence,

W(F)dF.dFdF,=W(F)dF, (518)

of F in the range F and F4dF. In evaluating
this probability distribution, we shall (consistent
with the physical situations we have in view)
suppose that fluctuations subject only to the
restriction of a constant average density occur.
The probability distribution W(F) of F can be
obtained by a direct application of Markoff’'s
method outlined in Chapter I, §3. We shall
obtain the explicit form of this distribution
(sometimes called the Holtsmark distribution)
in §2 below, but we should draw attention,
already at this stage, to the fact that the speci-
fication of W(F) does not provide us with all the

8 Cf. particularly Eq. (317) and Eq. (515) above.
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necessary information concerning the fluctuating
force F for an equally important aspect of F
concerns the speed of fluctuations.

According to Eq. (517) the rate of change of F
with time is given by

{ V.' (T,"V.‘)
= 3r—
|r:|? [7:]®

dF
f=—=GEL M

., (519
502 }()

where V; denotes the velocity of a typical field
star relative to the star under consideration. It
is now clear that the speed of fluctuations in F
can be specified in terms of the bivariate dis-
tribution

W(F, f)

which governs the probability of the simul-
taneous occurrence of prescribed values for
both F and f. It is seen that this distribution
function W(F, f) will depend on the assignment
of a priori probability in the phase space in
contrast to the distribution W(F) of F which
depends only on a similar assignment in the
configuration space. Again, it is possible by an
application of Markoff’'s method formally to
write down a general expression for W(F, f); but
it does not appear feasible to obtain the re-
quired distribution function in an explicit form.
However, as Chandrasekhar and von Neumann
have shown, explicit formulae for all the first
and the second moments of f for a given F can
be obtained; and it appears possible to make
some progress in the specification of the sta-
tistical properties of F in terms of these moments.

(520)

2. The Holtsmark distribution W (F)

We shall now obtain the stationary distribu-
tion W(F) of the force F acting on a star, per
unit mass, due to the gravitational attraction
of the neighboring stars.

Without loss of generality we can suppose
that the star under consideration is at the origin
O of our system of coordinates. About O de-
scribe a sphere of radius R and containing N
stars. In the first instance we shall suppose that

N M; N
F=GZ——1’;=Z F,.

=1 |7;]3 i=1

(521)

But we shall subsequently let R and N tend to
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infinity simultaneously in such a way that

(4/3)xRn=N

(R— o ; N> x; n=constant). (522)

This limiting process is permissible, in view of
what we shall later show to be the case, namely,
that the dominant contribution to F is made by
the nearest neighbor [cf. Egs. (560) and (564)
below]; consequently, the formal extrapolation
to infinity of the density of stars obtaining only
in a given region of a stellar system can hardly
affect the results to any appreciable extent.
Considering first the distribution Wx(F) at
the center of a finite sphere of radius R and
containing N stars, we seek the probability that

Fo SF $Fo+dF,. (523)

Applying Markoff's method to this problem we
have [cf. Egs. (51) and (52)]

1 +o0
W (Fo) =— f exp (—ip-Fo)dx(e)de, (524)
87t J_,

where

@ R

N
Ax(e)=11 fM f| e GeR)

XT.‘(T;, M;)dr.dM;. (525)

In Eq. (525) 7i(r:, M;) governs the probability
of occurrence of the ith star at the position 7;
with a mass M, If we now suppose that only
fluctuations which are compatible with a con-
stant average density occur, then

(1, My) = (3/4xR%)7(M),

where 7(M) now governs the frequency of oc-
currence of the different masses among the stars.
With the assumption (526) concerning the 7,'s
Eq. (525) reduces to

3 o
A =| —— 10 e
Xr(M’)drdM] . (527)

(526)

where we have written
é=GMr/|r|3 (528)

We now let R and NV tend to infinity according
to Eq. (522). We thus obtain
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1 +oo
W(F)=— f exp (—ip-F)A(g)de, (529)

8nd
where

3 0 R
4 =limit[ f f exp (io+4)
(@) Roxw LATR3 Jm =0 |r|=0 ple

4xR3n/3
XT(M)deM] (530)

Since,

3 f‘”
47R3 Jm =0

we can rewrite our expression for A(p) in the
form

3 00
A(p) =limit [1 _ f
(9) R0 47R? -0

4T R3n/3
X[1—exp ('ig-¢)]drdM] . (532)

R
f (M)dMdr=1, (531)
|71=0

R
(M)
I71=0

The integral over r which occurs in Eq. (532) is
seen to be absolutely convergent when extended
over all |r|, i.e., also for [r|—». We can ac-
cordingly write

3 0 )
A(p) =limit [1-— f f (M)
(@ Resco 47RE J =0 |r|=0 (

4w R3n/3
X[1—exp ('ip~¢):|drdM] , (533)

o A(e)=exp [—nC(e)], (534)
where

= T — 10°d) |drd M.
Cle) fM . fl OO0 —exp Gorg) Wrad

In the integral defining C(g) we shall intro-
duce ¢ as the variable of integration instead of r.
We readily verify that

dr=—}(GM)*"|g|~*"dg.  (536)

Hence,

0 +o0
Cloy=16* [ ammnsn [ aglgl-:
0 —00

X[1—exp (io*4) ],

or, in an obvious notation

(537)

+o0
[1—exp (Go+9)]
X|g|~*dg.

Cle) = 4G3(M2) f

(538)
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The foregoing expression is clearly unaffected
if we replace ¢ by —¢. But this replacement
changes exp (fp°¢) into exp (—%p°¢) under the
integral sign; taking the arithmetic mean of the
two resulting integrals, we obtain

+o0
Co=460rn [ [1=cos (9]l 812244,

Choosing polar coordinates with the z axis in
the direction of ¢ Eq. (539) can be transformed to

) +1 27
cw=scarm [ [ [
0 -1%v0

X[1—cos (o] |8|2)]| 8|~ dwdtd|¢|, (540)

or, introducing further the variable z=|9||4¢|,
we have

Clo) = 3GV o] ¥

© +1 27
X f f f [1—cos () - *"dwdidz. (541)
0 -1 0

After performing the integrations over w and ¢
we obtain

C(g) = 2#63/2(M3/2)A,, l 0 | 3/2
X f (z—sin 2)z772dz, (542)
0

or after several integrations by parts

0

16
Ce) =EW63/2(M 312, | 0| 302 f 2712 cos zdz.
0
4 (543)
=S @rG) M e

Combining Egs. (529), (534), and (543) we
now obtain

1 +0o0
W= [ exp (—io-F—alolmde, (s48)
™ —
where we have written
a=(4/15)(2xG)¥¥ M3*?)n. (545)

Using a frame of reference in which one of the
principal axes is in the direction of F and chang-
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ing to polar coordinates, the formula (544) for
W(F) can be reduced to

1 " : 3/2
W’:@fo f exp (—io| |F|i—alo|*?)

X|el|%dtd|e|. (546)
The integration over ¢ is readily effected, and we
obtain
W) =—— [ exp (=alel ")
2x2|F| Jy
Xlel sin (Je[|[F|)dle|. (547)
If we now put
x=|9||FI’ (548)
Eq. (547) becomes
W(F) = f exp (—ax¥?/| F|3n)
wir e, P ( |F|
Xx sin xdx. (549)

We can rewrite the foregoing formula for W(F)
more conveniently if we introduce the normal

field Qp defined by
Qu=a*=(4/15)3(2xG) (M*Bun)*?, )

=2.6031G({M3/%)pn)?3 f 550
and express | F| in terms of this unit:
|F| =BQn=Ba*>. (551)
Equation (549) now takes the form
W(F) = H(B) /4’8, (552)

where we have introduced the function H(g)
defined by

2 -]
H(B)=— f exp [— (x/B)%*Jx sin xdx. (553)
B Jy
Since,
W(|F|)=4x|F|*W(F), (554)
we obtain from Egs. (551) and (552)
W(|F|)=H(B)/Qu; (555)

accordingly H(B) defines the probability distri-
bution of |F| when it is expressed in units of
Qu. The function H(B) has been evaluated
numerically and is tabulated in Table IX.
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The asymptotic behavior of the distribution
W(| F|) can be obtained from the formulae:

H(B)=4p/37+0(8") (8—0), (556)
and
H(B)=(15/8)(2/m)"*p~*2+0(8~*)
(B—w). (557)
We find [cf. Egs. (551) and (555)]
W(|F|)=(4/3xQs®) | F|* (|F|—0), (558)
and
W(|F|)=(15/8)(2/m)"2Qp*? | F| =5
(IF|—w). (559)

Substituting for Qg from Eq. (550) in Eq. (559)
we obtain

W(|F|)=2nG3* M32)p\n| F |52

(|F|—>w). (560)

It is seen that while the frequency of occur-
rence of both the weak and the strong fields is
quite small, it is only the fields of average in-
tensity which have appreciable probabilities.
In particular, the value of |F| which has the
maximum probability of occurrence is found to
be (see Table IX) ~1.6Qx.

Equations (552) and (553) provide, of course,
the exact formula for the distribution of F for
an deally random distribution of stars. But an
elementary treatment which leads to an ap-
proximate formula for W(F) is of some interest
and illuminates certain points in the theory.
The treatment we refer to is based on the assump-
tion that the force acting on a star is entirely
due to its nearest neighbor.

Now, the law of distribution of the near-
est neighbor is given by [see Appendix VII,
Eq. (671)]

w(r)dr =exp (—4nr*n/3)4nrrndr, (561)

and, since on the first neighbor approximation
|F| =GMr2, (562)

we readily obtain the formula

W(|F|)d| F| =exp [ —4r(GM)¥n/3| F| ]

X2 (GM)¥2n |F|-52d|F|. (563)
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TasLE 1X. The function H(B).

8 H) 8 H(p)
0.0 5.0 0.04310
0.1 0.004225 5.2 0.03790
0.2 0.016666 5.4 0.03357
0.3 0.036643 5.6 0.02993
0.4 0.063084 5.8 0.02683
0.5 0.094601 6.0 0.02417
0.6 0.129598 6.2 0.02188
0.7 0.166380 6.4 0.01988
0.8 0.203270 6.6 0.01814
0.9 0.238704 6.8 0.01660
1.0 0.271322 7.0 0.01525
1.1 0.30003 7.2 0.01405
1.2 0.32402 7.4 0.01297
1.3 0.34281 7.6 0.01201
1.4 0.35620 7.8 0.01115
1.5 0.36426 8.0 0.01038
1.6 0.36726 8.2 0.00967
1.7 0.36566 8.4 0.00903
1.8 0.36004 8.6 0.00846
1.9 0.35101 8.8 0.00793
2.0 0.33918 9.0 0.00745
2.1 0.32519 9.2 0.00701
2.2 0.30951 9.4 0.00660
2.3 0.29266 9.6 0.00622
24 0.27485 9.8 0.00588
2.5 0.25667 10.0 0.00556
2.6 0.238 15.0 0.00188
2.7 0.222 20.0 0.00089
2.8 0.206 25.0 0.00050
2.9 0.190 30.0 0.00031
3.0 0.176 35.0 0.00021
3.2 0.150 40.0 0.00015
3.4 0.128 45.0 0.00011
3.6 50.0 0.00009
3.8 60.0 0.00005
4.0 70.0 0.00004
4.2 80.0 0.00003
44 0.06734 90.0 0.00002
4.6 0.05732 100.0 0.00002
4.8 0.04944

According to the distribution (563)

W(FI)=2x(GM)¥n| F|=5 (|F|—>w), (564

which is seen to be in exact agreement with the
formula (560) derived from the Holtsmark
distribution (555). The physical meaning of this
agreement, for |F|—e« in the results derived
from an exact and an approximate treatment of
the same problem, is simply that the highest
fields are in reality produced only by the nearest
neighbor. More generally, it is found that the
two distributions (555) and (563) agree over
most of the range of | F|. Thus, the field which
has the maximum frequency of occurrence on the
basis of (563) is seen to differ from the corre-
sponding value on the Holtsmark distribution
by less than five percent. The region in which the
two distributions (555) and (563) differ most
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markedly is when |F|—0: on the Holtsmark
distribution W(| F|) tends to zero as | F|? while
on the nearest neighbor approximation W(|F|)
tends to zero as exp (—const. | F|~3) [cf. Egs.
(558) and (564)]. However, the fact that the
nearest neighbor approximation should be seri-
ously in error for the weak fields is, of course, to
be expected : for, a weak field arises from a more
or less symmetrical, average, complexion of the
stars around the one under consideration.and
consequently F under these circumstances is the
result of the action of several stars and not due
to any one single star.

Finally, we may draw attention to one im-
portant difficulty in using the Holstmark dis-
tribution for all values of |F|: It predicts
relatively too high probabilities for |F| as
| F|— . Thus, on the basis of the distribution
(555), (| F|®a is divergent. [The same remark
also applies to the distribution (564).] These
relatively high probabilities for the high field
strengths is a consequence of our assumption of
complete randomness in stellar distribution for
all elements of volume. It is, however, apparent
that this assumption cannot be valid for the
regions in the very immediate neighborhoods of
the individual stars. For, if V denotes the rela-
tive velocity between two stars when separated
by distances of the order of the average distance
between the stars, the two stars cannot come
closer together (on the approximation of linear
trajectories) than a certain critical distance
r(|V|) such that

|VI2/2=[G(M+M:)/r(|V])],  (565)
or

r(|V])=[2G(M+ M) /| V]*].

Otherwise the two stars should be strictly re-
garded as the components of a binary system and
this is inconsistent with our original premises.
This restriction therefore leads us to infer that
departures from true randomness exist for
r~r(|V|). However, under the conditions we
normally encounter in stellar systems, #(|V|) is
very small compared to the average distance
between the stars. Thus, in our galaxy, in the
general neighborhood of the sun, 7(| V|) ~2X 105
parsec, and this is to be compared with an
average distance between the stars of about
three parsecs. Accordingly, we may expect the

(566)
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Holtsmark distribution to be very close to the
true distribution, except for the very highest
values of | F|. More particularly, the deviations
from the Holtsmark distribution are to be
expected for field strengths of the order of
|F|~(GM:/[r(1V)]D
(M| V| /4G (M 1+ M3)?%).  (567)

When | F| becomes much larger than the quan-
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tity on the right-hand side of Eq. (567), the true
frequencies of occurrence will very rapidly tend
to zero as compared to what would be expected
on the Holtsmark distribution, namely (560).
A rigorous treatment of these deviations from
the distribution (555) will require a reconsidera-
tion of the whole problem in phase space and is
beyond the scope of the present investigation.

3. The Speed of Fluctuations in F

As we have already remarked the speed of fluctuations can be specified in terms of the distribu-
tion function W(F, f) which gives the simultaneous probability of a given field strength F and an
associated rate of change of F of amount f [cf. Egs. (517) and (519)]. The general expression for this
probability distribution can be readily written down using Markoff’s method [I, §3, Egs. (51), (52),
and (53)7]. We have [cf. Egs. (529) and (530)]

1 0 o0
WEN=— [ [ exp[=ileF+o:)TA(e, o)dodo, (568)
647° Jjg1=0V j0)=0
where
3 47 R3n/3
Ao, o) =limit [ f f f exp [i(g-g&—}-mﬂg)]rdrdVdM] . (569)
Row LATRE Jocrrcnd 111<rY | Vicw

In Eqgs. (568) and (569) ¢ and ¢ are two auxiliary vectors, 7 denotes the number of stars per unit
volume, and

V L ]
= y=cu| 3" V)}. (570)
[r]? Ur[2 |
Further,
dVdM=+(V; M)dVdM (571)

gives the probability that a star with a relative velocity in the range (V, V4-dV) and with a mass
between M and M+-dM will be found. It should also be noted that in writing down Eqs. (568) and
(569) we have supposed (as in §2) that the fluctuations in the local stellar distribution which occur
are subject only to the restriction of a constant average density.

Since
3 -]
f f f rdrdVdM =1,
47 R3 VoV | 11<rY | V<0

© 4T R3n/3
f f f (1—exp [i(9-¢+o-|lg)]}rdrdVdM} . (573)
M=0v|7|<RY | V|<w»

(572)

we can rewrite (569) as

A(p, 0) =limit { 1—-

Rox

4rR3

The integral over r which occurs in Eq. (573) is seen to be conditionally convergent when extended
over all |r[, i.e., also for |r|— . Hence, we can write

3
A(p, ) =limit {1 -

@ ) ) 4TR3n/3
1— (o° . ardVdM , 574
el -eebestepr } (574)

R-x
or

A(e, 0)=exp [—nC(p, 0)] (575)
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where

0 ~+o0 +00
Clo, 0) = f f f {1—exp [i(o*é+0+4) ]} rdrdVdiL. (576)

0 —00 —00

This formally solves the problem. It does not, however, appear that the integral representing
C(p, o) can be evaluated explicitly in terms of any known functions. But if we are interested only
in the moments of f for a given F and of F for a given f we need only the behavior of 4(p, ¢)and,
therefore, also of C(g, o) for |@|, respectively, || tending to zero. For, considering the first and the
second moments of the components f¢, f,, and f; of f along three directions £, 5, and ¢ at right angles
to each other, we have

@

W(F)futm= W(F, f)fdf (u=§&n, $). (577)
1f1=0

]

W) fufoIn= W(F, [)fufdf  (u,v=E& n, {), (578)
If1=0

and

where W(F) denotes the distribution of F for which we have already obtained an explicit formula in
§2. Substituting now for W(F, f) from Eq. (568) in the foregoing formulae for the moments we obtain

1 ] 0 0
WEW=— [ [ [ exp[-ileF+o:)1A(e, o)sidedods, (579)
647 V) f1=0V 1g1=0¥ |01 =0
and 1 00 0 0
W) fufIn= f f f exp [—i(eF-+oef)14(e 0)ffidedadf.  (580)
647 J 10 g1=0V |@|=0
But ) Y .
— [ exp (—iowf)fidf=i8 (2)3(o)3(o),
87 J g0
1 0
= e (o ptds= =5 (@9s(eD8(en).  (581)
T | fl=0
1 0
— [ exp (—ivef)fifsdf = — (008 (a)5(cr),

873 J)f1-0

etc. In Eq. (581) § denotes Dirac’s é-function and 8’ and §” its first and second derivatives; and re-
membering also that

+o0 +00 +o
[ s@sear=r0); f )8 (@)dx=— f'(0); f f@) @ dx=1"(0),  (582)

Egs. (579) and (580) for the moments reduce to

1 * 9
WEm=— [ exp (<igeP)| —a )| do (583)
87 Jigi=0 do, 1o]=0
and
1 © 92
WE === [ ep (~igB) ——A(0.0)] ao (584)
8% Jig1-0 0,00, 10]=0

We accordingly see that the first and the second moments of f can be evaluated from a series
expansion of 4(p, @) or of C(p, @) which is correct up to the second order in |e|. Such a series expan-
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sion has been found by Chandrasekhar and von Neumann and, quoting their final result, we have

4 2
C(g, IJ‘) =1—5(21r) *G*(x l;>Av‘ 91 i—*“37!"1:6(0'1(.2‘4 V1>Av+0'2(M V2>Av - 20’3(M V3)Av)

3
+2—8—(27r) IGH o| [ (Soi2+4022 — 202 )( MV D+ (Ao 2+ 5022 — 2032) (M V)

+ (402 — 2012 —202)( M}V 32— 80203 MV Vo — 8030 (MAV 3 Vi
42010 MV 1 Vo) 1+0(le|3) (Jo|—0), (585)

where ( )u indicates that the corresponding quantity has been averaged with the weight function
(V; M) [cf. Eq. (571)]; further, in Eq. (585) (1, 09, 03) and (V3, Vs, V3) are the components of o
and V in a system of coordinates in which the z axis is in the direction of .

In Eq. (585) V=(V1, Vs, V3) is of course the velocity of a field star relative to the one under con-
sideration. If we now let ¥ and v denote the velocities of the field star and the star under considera-
tion in an appropriately chosen local standard of rest, then

V=u—v. (586)

In their further discussion, Chandrasekhar and von Neumann introduce the assumption that the
distribution of the velocities u among the stars is spherical, i.e., the distribution function ¥(u) has
the form

¥ (u) =¥ (M) [u]?), (587)

where ¥ is an arbitrary function of the argument specified and the parameter j (of the dimensions of
[velocity I™) can be a function of the mass of the star. This assumption for the distribution of the
peculiar velocities u implies that the probability function 7(V; M) must be expressible as

(V; M) =¥ [*(M) [u|*Ix(M), (588)

where x(M) governs the distribution over the different masses. For a function 7 of this form we
clearly have

<MV1'>AV= —<M>Avva‘; <M§ Vi2>Av= %<M§|u|2)kv+(M*)Avvi2 ('i= 11 27 3))
(589)
MV V = (MBav; (@, j=1,2,3,17%7).

Substituting these values in Eq. (577) we find after some minor reductions that
4 2 1
C(o, o) =1—5(27f) IGK M| o] *—SMG(MM(WH'FUM_ 203v3) 472(271') IGK M u || o| ~H o +02?)

3
+2_8'(27r) 3G%<]u-}>m [ ] | -§[0'12(57)12+4022 - 27)32) +0’22(52)22+47)12 - 22)32)
+0‘32(4W32 - 27)12 el 27)22) +20’10'2111‘Z)2 - 80'20'37}22)3 - 80’30’}1)3’1)1] +O( l (i I 3) . (590)

With a series expansion of this form we can, as we have already remarked, evaluate all the first and
the second moments of f for a given F.

Considering first the moment of f, Chandrasekhar and von Neumann find that

ne), s (Do)
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where Qy is the ‘“normal field”’ introduced in §2 [Egs. (550) and (551)] and

B(B) = 3( f "H(s)as / BH(B)) -1, (592)

We shall examine certain formal consequences of Eq. (592).
Multiplying Eq. (591) scalarly with F we obtain

F-((Z)F, v =§1rG(M)AvnB(‘—QF:[) (veF); (593)
but -
SCRRLICON =
Hence,
(), -soon( )

On the other hand, if F;denotes the component of F in an arbitrary direction at right angles at the
direction of v then according to Eq. (591)

@n = er<M>A,nB(%) T;FIZF,.. (596)

Combining Eqs. (595) and (596) we have

1 /dF; 3 1 /d|F]|
F,\dt/F,v 2|F|\ dt /F,v

Equation (597) is clearly equivalent to

d
;(log F;—3%log |F|)F, v=0. (598)
t

GG, o

We shall now examine the physical consequences of Eq. (591) more closely. In words, the meaning
of this equation is that the component of

—-z-rG(M)A,nB(I—QF;!) ( v—3 TFFlzp) (600)

We have thus proved that

along any particular direction gives the average value of the rate of change of F that is to be expected
in the specified direction when the star is moving with a velocity v. Stated in this manner we at
once see the essential difference in the stochastic variations of F with time in the two cases |v| =0
and |v]|0. In the former case (F),=0; but this is not generally true when |v| 0. Or expressed
differently, when |v| =0 the changes in F occur with equal probability in all directions while this is
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not the case when |v| 0. The true nature of this difference is brought out very clearly when we

consider
d|F|
(——) (601)
dt F,v

according to Eq. (595). Remembering that B(8) 2 0 for 82 0, we conclude from Eq. (595) that

( )F v>0 if (veF)>0, (602)

and

( )F v<0 if (veF)<O. (603)

In other words, if F has a positive component in the direction of v, | F| increases on the average,
while if F has a negative component in the direction of v, | F| decreases on the average. This essential
asymmetry introduced by the direction of v may be expected to give rise to the phenomenon of
dynamical friction.

Considering next the second moments of f Chandrasekhar and von Neumann find that

g
(lf12F, v)Av=Zabm{ZG(ﬁ)+7k[G(B) sin® a—I(B)(3 sin® a—2) ]}

2

+ {BH(B)(4—3 sin® a) +3K(B)(3 sin? a—2)}, (604)
BH(B)
where, a denotes the angle between the directions of F and v
4(2 VIGH M) b 12 VIGH M u|?) 2 G{M)n|v|n; 3 (MOl vl” (605)
a—ls T W _Z(r (M} u|Hum, g——s—r( wlv|n; —7(M*|ulz>Av’
and )
e == [ exp L— /6135 sin pas
iy
’ (606)
3 ph B B
G(B)=- —1H(8)dg, I(B)=p"1% G(B)dg, KB = H(B)dpB.
®) Zfoﬁ 6)ds (ﬂ)Bfoﬂ(ﬂ)B (’S)fo ®)dp

Averaging Eq. (604) for all possible mutual orientations of the two vectors F and v we readily find
that
BYG(B) 7 g
F, v)a=4ab (1+—k)'+———}, (607)
(I S12F, o) { ) p 20
or, substituting for % and g?/2ab from (605) we find

B <M*>~(v|2) 5 el }
HE) \ Mt uldn/ | 120 QOO0 0|0

(I fIPRn= 4ab{ (608)

In terms of Eq. (608) we can define an approximate formula for the mean life of the state F ac-
cording to the equation

TiF|, lol=|F| /(| fI2F))a). (609)
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Combining Eqgs. (608) and (609) we find that

1
T\F|, lv|=T|F|,0 , (610)
A0yt s 0l zﬂmr
T | 127 UL 1| BG(B)
where T'|F|, 0 denotes the mean life when |v| =0:
at BH(B))}
T|F;,o=[— ] . (611)
4 G
From Eq. (610) we derive that
T«|F| as |F|—>0; T«|F|7? as |F|ow; (612)

in other words the mean life tends to zero for both weak and strong fields.
I am greatly indebted to Mrs. T. Belland for her assistance in preparing the manuscript for the
press. My thanks are also due to Dr. L. R. Henrich for his careful revision of the entire manuscript.
APPENDIXES
1. THE MEAN AND THE MEAN SQUARE DEVIATION OF A BERNOULLI DISTRIBUTION
Consider the Bernoulli distribution
n!
w(x)=———p*(1—p)** (p<1;x a positive integer< n). (613)
x!(n—x)! ‘
An alternative form for w(x) is
w(x) = C,npg =, (614)
where C,” denotes the binomial coefficient and
g=1—p. (615)
From Eq. (614) it is apparent that w(x) is the coefficient of % in the expansion of (pu+¢):
w(x) =coefficient of % in (pu-+q)". (616)

That > w,=1 follows immediately from this remark:

IZ; w(x) =IZ::1 coefficient of u= in (pu-+q)*, 617)
=[(pu+g"Ju1=1.

Consider now the mean and the mean square deviation of x. By definition

(=3 xw(x) (618)

=1

and

8= <(x - <x>Av)2>Av = <x2>Av - <-”C>Av2 = i xz‘w(x) - <x)Av2- (619)

z=1
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We have
(x)n=D_x X {coefficient of u* in (pu-+q)*},
n d
=) coefficient of %< in d—(pu+g)", - (620)
z=1 U
d
| tputar| =mpo+o.
du u=1 J
Hence
() =np. (621)
Similarly,
(xz)m=£: x2X {coefficient of u= in (pu+q)*},
z=1
n d d
=Y coefficient of #* in -—(u-—[pu-!—q]"), > (622)
z=1 du du
()|
={—|\ u—/[pu n ,
{du\ du puta Ju=1 )
or,
(xHy=np+n(n—1)p2. (623)
Combining Egs. (619), (621) and (623) we obtain
F=np—np*=np(l—p)=npq. (624)

II. A PROBLEM IN PROBABILITY: MULTIVARIATE GAUSSIAN DISTRIBUTIONS

In Chapter I (§4, subsection [a]) we considered the special case of the problem of random flights
in which the NV displacements which the particle suffers are all governed by Gaussian distributions
but with different variances. We shall now consider a generalization of this problem which has
important applications to the theory of Brownian motion (see Chapter II, §2, lemma II).

Let

N N
w=3 yir; ®=3 ¢, (625)
=1 =1
where the ¢,'s and the ¢;'s are two arbitrary sets of N real numbers each, and where further r is a
stochastic variable the probability distribution of which is governed by
7(r) = (1/(2x1*)}) exp (— [r[?/2P), (626)

where [ is a constant. We require the probability W(¥", ®)dWd® thatW¥ and ® shall lie, respectively,
in the ranges (W', W'+dW¥') and (®, ®+d®). Applying Markoff’s method to this problem, we have
[cf. Egs. (51) and (52)]

1
6478

w(w, @)=

+w +oo
f f exp [—i(p "W +0+®) (o, 0)dodo, (627)

where p and ¢ are two auxiliary vectors and

A T
N(@t 0) -;I=I1 (21rl2)§

[ ew LiewatosmTexs (~1rl2/2mar (629)
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To evaluate 4 x(p, o) we need the value of the typical integral

1 e
——— [ exp Lirstatom) = (|7]2/20) Jir (629)
QmiHtJ_,
We have
! ” 22402 202Yd 1
J=,,I,,I_, G f_w exp { —[x*+2il%x(p1;+01¢,) 1/ 21 dx, f (630)
=exp { —P[(pw;i+010;)%+ (po¥;+020,)%+ (ps¥i+035)*]/2}. J
Hence
N
Ax(g, 0)=exp {—I ; [(pwit 010+ (po¥ i+ 0267+ (psi+036,)*1/2 } ‘r (631)
=exp [—(P|e|*+2Rpe+Q|0[?)/2], J
where we have written
N N N
P=1Y y? R=PY ¢y Q=P ¢/ (632)
=1 =1 7=1

Substituting for Ax(p, o) from Eq. (632) in the formula for W (¥, ®) [Eq. (627)] we obtain
~+0 +o0
W(W, ) =—— H f f exp { —[Ppi+2Rpioi+Qoi+2i(pi¥ito:8)/2}dpidos.  (633)
7r =1

To evaluate the integrals occurring in the foregoing formula, we first perform a translation of the
coordinate system according to

pi=btai; oi=n+p: (1=1,2,3), (634)
where «a; and B; are so chosen that
Pa;+RBi=—1¥;; Rai+QBi=—1i®; (1=1,2,3). (635)
With this transformation of the variables we have

Pp2+42Rpici+ Qo2+ 2i(pi¥;+0:®:) = PE242RE 4 Ond+i(as ¥+ 8:P0),

1 (636)
=P$»‘2+2R’éim+Qm2+P R2(P(Pi2_2R¢’i\I/i+Q\I,i2)- I

Hence,

1
w(w, @) =i H exp [~ (P®2—2R®:¥;+QV.?)/2(PQ—R?)]

6 it
Xf+°°f+°° exp [ — (P£2+2REmi+Qn?)/2]dEdn:.  (637)
From this equation we readily find that o
wW(w, ®)=[1/8x(PQ—R*) ] exp [— (P|®|*—2R¥ «@+Q| ¥ |?)/2(PQ— R ], (638)
which gives the required probability distribution.

III. THE POISSON DISTRIBUTION AS THE LAW OF DENSITY FLUCTUATIONS

Consider an element of volume » which is a part of a larger volume V. Let there be IV particles
distributed in a random fashion inside the volume V. Under these conditions the probability that a
particular particle will be found in the element of volume v is clearly v/ V; similarly, the probability
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that it will not be found inside v is (V' —2)/V. Hence, the probability Wy(n) that some n particles
will be found inside v is given by the Bernoulli distribution

N! 7\" P\ N
Wy (n) =——(—) (1 ——) . (639)
n!(N—n)I\V |4
The average value of # is therefore given by [cf. Eq. (621)]
(mn=N(@/V)=v» (say). (640)
In terms of v Eq. (639) can be expressed in the form
N! »\" v\ N
WN(n)=—————(—) (1——) . (641)
n!(N—n)I\N N

The case of greatest practical interest arises when both NV and V tend to infinity but in such a way
that » remains constant [see Eq. (640)]. To obtain the corresponding limiting form of the distribu-
tion (641) we first rewrite it as

1 »\" p\ V-
Wa(n)=—N(N—1)(N—2)- - ~(N—n+1)(~) (1——) :
n! N N

(=) (=5) - (7)05)

and then let N— « keeping both » and # fixed. We have
W(n)=limit Wy(n),

N

V"l ) 1 2 . n—1 p\ N
im0 (-5) ()05 b e
—hmxt (1———)
n' Now

W(n)=vme""/n!, (644)

which is the required Poisson distribution.

In some applications of Eq. (644) (e.g., III, §3) v is a very large number ; and when this is the case,
interest is attached to only those values of # which are relatively close to ». We shall now show that
under these conditions the Poisson distribution specializes still further to a Gaussian distribution.

Rewriting Eq. (644) in the form

(642)

Hence,

log W(n)=mnlog v—v—log n! (645)
and adopting Stirling’s approximation for log # [cf. Eq. (7)] we obtain
log W(n)=nlog v—v— (n+%) log n+n—13% log 2r+0(nY). (646)
Let
n=v+34. (647)

Equation (646) becomes
8
log W(n)= —(v+6+3) log ( 1 +—) +6—1% log (2mv)+0(n"). (648)
14
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If we now suppose that §/»<1 we can expand the logarithmic term in Eq. (648) as a power series in
8/v. Retaining only the dominant term, we find

log W(n)=—(8%/2v)—% log 2mv) (v—; §/v—0). (649)

Thus,
Wn)=[1/2nv) ] exp [ — (n—»)%/2v], (650)

which is the required Gaussian form.

IV. THE MEAN AND THE MEAN SQUARE DEVIATION OF THE SUM OF TWO PROBABILITY DISTRIBUTIONS

Let wi(x) and wa(y) represent two probability distributions. For the sake of definiteness we shall
suppose that x and y take on only discrete values. A probability distribution which is said to be
the sum of the two distributions is defined by

w(z)= Y wi(x)w:(y), (651)
zty=z
where in the summation on the right-hand side we include all pairs of values of x and y (each in their
respective domains) which satisfy the relation x+vy=2z. We may first verify that w(z) defined accord-
ing to Eq. (651) does in fact represent a probability distribution. To see this we have only to show
that Y w(z)=1. Now,

wE) =X 2 wi®)w(y); (652)

z zty=z

accordingly, in the summation on the right-hand side, x and y can now run through their respective
ranges of values independently of each other. Hence,

2 w(z)=[2s wi(x) L2, wa(y) ]=1. (653)

We shall now prove that the mean and the mean square deviation of the sum of two probability dis-
tributions is the sum of the means and the mean square deviations of the component distributions.
To prove this theorem, we observe that by definitions

On=E @=L T ruuo) (654)
. @m0 Ty [xwr()wa(y) +ywn()wa(s) ], (655) -

where in the summations on the right-hand side we can again let x and y run their respective ranges
of values independently of each other. Hence,

(@=L xwi(x) JL2y wa(y) ]+ [ 200 wilx) L2y ywa() ], (656)
. <Z>Av = <x>Av+ <y>Av~ ' (657)

or

Similarly,
(E=(@m) I =2: (2— () *w(z),
=2 2 (ty—@n—w) wi(x)ws(y).

=5 T D= ()22 — () (0 — (9w) + (7 — ()w) 2 Teon () ws (), r (658)
=X (v — @)1 () LTy () JH [T w1 () T (v — () 202(3)]
F2L T (= )i () TTEy (= (a)ea(3) 1.
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Hence,
((z= (@) Ha= (& — (D) Dae -y = D) D (659)
The theorem is now proved.
The extension of the foregoing results to include the case when x and y are continuously variable is,
of course, obvious. Similarly the definitions and results can be further extended to include the sums of
more than two probability distributions.

V. ZERMELO’S PROOF OF POINCARE'S THEOREM CONCERNING THE QUASI-PERIODIC CHARACTER
OF THE MOTIONS OF A CONSERVATIVE DYNAMICAL SYSTEM

Consider a conservative dynamical system of #n degrees of freedom and which is described by a
Hamiltonian function /7 of the generalized coordinates ¢, - - -, ¢g» and momenta p1, - - -, p,.. The
state of such a dynamical system can be represented by a point in the 2z dimensional phase space of
the ¢’s and p’s. Similarly, the trajectory described by the representative point will describe the evolu-
tion of the dynamical system.

Through each point in the phase space there passes a unique trajectory which can be derived from
the canonical equations of motion

oH oH
Gs=—1; Ps=—— (s=1, -+, n). (660)
s ags
More generally, consider any arbitrary continuous domain of points go (of finite measure) in the
phase space. Let the points go be the representatives at time t=0 of an ensemble of dynamical systems
all described by the same Hamiltonian function H(p1, -+, $a; q1, - - -, ¢n). At a later time ¢ the
representatives of the ensemble will occupy a continuous domain of points g, which can be obtained
by tracing through each point of g, the corresponding trajectory and following along the various
trajectories for a time ¢. Because of the uniqueness, in general, of the trajectories passing through a
given point in the phase space, the construction of the domain g, from an initial domain g, is a
unique process. We shall accordingly refer to g: as the future phase (at time ¢) of the initial phase go
(at time £=0) of the given dynamical system.

Now, according to Liouville’s theorem of classical dynamics, the density of any element of phase
space remains constant during its motion according to the canonical Egs. (660). Hence, if w; denotes
the volume extension of the domain of points g, introduced in the preceding paragraph, it follows
from Liouville’s theorem that w, remains constant as ¢ varies.

We have already described how from an initial phase go we can derive the future phase g; at time #.
The domain of points gy together with all its future phases g;, (0 <t< «) clearly form a continuous
domain of points which we shall denote by T'p: I'y is accordingly the class of all states which at some
finite past occupied states belonging to go. The extension of T'y will be finite if we are considering a
dynamical system which is enclosed—for, then, none of the coordinates or momenta can take on
infinite values and the entire accessible region of the phase space remains finite. We shall suppose
that this is the case and denote by Q, the extension of T'y. Clearly Q2 wo. In a similar manner we can,
quite generally, define the domain of points I'; which includes all the future phases of g.. Let @, denote
the extension of I';. It is evident that

Q, 2 Q, whenever <t (661)

For, Q2 denoting the extension of all the future phases of g;, must therefore necessarily include also
the future phases of g, if £, <t;. On the other hand, considering I'y itself as a domain of points, we
can construct i¢s future phases in exactly the same way as the future phases g; of go were constructed.
But the future phase of 'y after a time ¢ is clearly I';. And therefore applying Liouville’s theorem to
the domain Ty and its future phases I'; we conclude that

Q,=constant. (662)
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Comparing this result with the inequality (661) we infer that the domain of points T can differ from T'y
by at most a set of points of measure zero. Hence, the future phases of g.(¢>0 but arbitrary otherwise)
must include go apart, possibly, from a set of points of measure zero. But the points of g; are them-
selves future phases of the points of go. Hence, the states belonging to g, (again, with the possible
exception of a set of zero measure) must recur after the elapse of a sufficient length of time; and this
is true no matter how small the extension wq of g, is, provided it is only finite. From this, the deduc-
tion of Poincaré’s theorem is immediate. (For a formal statement of Poincaré’s theorem see Chapter

ITI, §4).

VI. BOLTZMANN'S ESTIMATE OF THE PERIOD OF A POINCARE CYCLE

To estimate the order of magnitude of the period of a Poincaré cycle, Boltzmann has considered
the following typical example:

A cubic centimeter of air containing 10® molecules is considered in which all the molecules are
initially supposed to have a speed of 500 meters per second. With a concentration of 10'® molecules,
the average distance between the neighboring ones is of the order of 10—¢ cm. Also, under normal
conditions, each molecule will suffer something like 4 X102 collisions per second so that on the whole
there will occur

b=2X10% collisions per second. (663)

Since Poincaré’s theorem asserts only the quasi-periodic character of the motions (see Chapter III,
§4 and Appendix V) the period to be estimated clearly depends on the closeness to which we require
the initial conditions to recur. For the case under discussion Boltzmann supposes that a molecule
can be said to have approximately returned to its initial state if the differences in position (x, v, 2)
and velocity (%, v, w) in the initial and the final states are such that

[Ax[, |Ay], |Az] £1077 cm, (664)
and
|Aul, |Av|, [Aw| <1 m/sec. (665)

In other words, we shall require the positions to agree to within 10 percent of the average distance
between the molecules and the velocities to agree within one part in 500.

We shall first estimate the order of magnitude of the time required for the recurrence of an initial
“abnormal” distribution in the velocities. According to Poincaré’s theorem, an initial state need not
recur earlier than the time necessary for all the molecules to take on all the possible values for the
velocity. We can readily determine the number N of such possibilities with the understanding that
we agree to distinguish between two velocities only if at least one of the components differ by more
than 1 m/sec.

The first molecule can have all velocities ranging from zero to a =500X10° m/sec.—since we have
supposed that in the initial state all the molecules have the same speed of 500 m/sec and that there
are 10" molecules in the system. Again, if the first molecule has a speed v; the second one can have
speeds only in range 0 to (a?—w,%)}. Similarly, if the first and the second molecules have speeds v,
and v, respectively, the third molecule can have speeds only in the range 0 to (a?—v:2—9,%)%; and so
on. Accordingly, the required number of combinations N is

a (a?—m2)} (a2 —m2 —pa2)} (@2 =2 -+ —p2% o)}
N=(4r)»1 f dvyv,? f dvava? f dvsvg?- - - f Av,_10% 1,
0 0 0 0

=(r@=912/2.3.4- . .[3(n—1)/2])a*>D (n, odd),
=(2(27)Br=12/3.5.7...3(n—1))a3»1 (n, even),

(666)

where
a=500X10° and #n=108, (667)
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Since each of these NV combinations occurs on the average in a time 1/b seconds [cf. Eq. (663) ] the
total time required for the velocities to run through all the possible values is

N/b. (668)

After this length of time we may expect the initial distribution of the velocities to recur to within the
limits of accuracy specified except for one single molecule the direction of whose motion has been
left unrestricted. On the other hand we have still left unspecified the positions of the centers of gravity
of all the molecules. But in order that we may say that the initial state has recurred to a sufficient
approximation, we must require the positions of the molecules in the final state also to agree with the
initial values to some stated degree of accuracy. This would clearly require the time (668) to be
multiplied by another number of order similar to N. However, the extremely large value already of
N/b gives some indication of the enormous times which are involved. Moreover, comparing these
times with the time of relaxation of a gas which is of the order 10~® second under normal conditions,
we get an idea as to how extremely small the fraction of the total number of complexions is for which
appreciable departures from a Maxwellian distribution occur. (For a further discussion of these and
related matters see Chapter 111, §4.)

VII. THE LAW OF DISTRIBUTION OF THE NEAREST NEIGHBOR IN A RANDOM
DISTRIBUTION OF PARTICLES

This problem was first considered by Hertz (see reference 71 in the Bibliographical Notes for
Chapter IV).

Let w(r)dr denote the probability that the nearest neighbor to a particle occurs between 7 and
r=+dr. This probability must be clearly equal to the probability that no particles exist interior to 7
times the probability that a particle does exist in the spherical shell between 7 and r+dr. Accordingly,
the function w(r) must satisfy the relation

w(r)= [1 — f 'w(r)dr]41rr2n, (669)
0
where 7 denotes the average number of particles per unit volume. From Eq. (669) we derive:
ar w(r) w(r)
—[——] = —4rrn—— (670)
drlL4nr'n 4nr’n
Hence
w(r)=exp (—4nr*n/3)4nrrin, (671)
since, according to Eq. (669)
w(r)—4nr’n  as r—0. (672)

Equation (671) gives then the required law of distribution of the nearest neighbor.
Using the distribution (671) we can derive an exact formula for the ‘‘average distance’’ D between
the particles. For, by definition

D= f ro(r)dr, (673)
0
or, if we use Eq. (671)
D=f exp (—4nr*n/3)4nrndr. (674)
0
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After some elementary reductions, Eq. (674) becomes

1

D=
(47n/3)}

o0
f e~ *xidx,
0

L (675)

=T(4/3)/(47n/3)%. J

Substituting for I'(4/3), we find

D=0.55396n"".

(676)
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problem of random flights considered in this chapter:
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formulate a problem of this general type:

1. K. Pearson, Nature 77, 294 (1905). Pearson’s for-
mulation of the problem was in the following terms: “A
man starts from a point O and walks / yards in a straight
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another / yards in a second straight line. He repeats this
process 7 times. I require the probability that after these
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problem Lord Rayleigh pointed out that the problem is
formally ‘‘the same as that of the composition of 7 iso-
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ibid. 47, 246 (1889). These papers are reprinted in Scientific
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flights was formul.ted by A. A. Markoff who also outlined
the method for obtaining the general solution.

5. A. A. Markoff, Wahrscheinlichkeitsrechnung (Leipzig,
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wegung und Koagulation von Kolloidteilchen,” Physik.
Zeits. 17, 557, 585 (1916). See also

7. R. von Mises, Wahrscheinlichkeitsrechnung (Leipzig
and Wien), pp. 479-518.

§3.—Markoff’s method described in this section is a
somewhat generalized version of what is given in Markoff
(reference §5). See also

8. M. von Laue, Ann. d. Physik 47, 853 (1915).

§4.—See A. A. Markoff (reference 5). The case of finite
N considered in subsection (b) follows the treatment of

9. Lord Rayleigh, Phil. Mag. 37, 321 (1919) (or Scien-
tific Papers, Vol. VI, p. 604).

§5.—The passage to a differential equation for the case
of the one-dimensional problem of the random walk was
achieved by Rayleigh:

10. Lord Rayleigh, Phil. Mag. 47, 246 (1899) (or Scien-
tific Papers, Vol. 1V, p. 370). See also Smoluchowski
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The following general references may be noted.

12. The Svedberg, Die Existenz der Molekule (Leipzig,
1912).

13. G. L. de Haas-Lorentz, Die Brownsche-Bewegung und
einige verwandte Erscheinungen, (Braunschweig, 1913).
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18. M. v. Smoluchowski, Ann. d. Physik 21, 756 (1906).
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problem, Brownian motion is idealized as a problem in
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intervals of order 871. For the general treatment of the
problem we require to base our discussion on an equation
of the type first introduced by Langevin:

19. P. Langevin, Comptes rendus 146, 530 (1908). In
this connection see
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20. F. Zernike, Handbuch der Physik (Berlin, 1928),
Vol. 3, p. 456.

§2.—The treatment of the Brownian motion of a free
particle given in this section is derived from:

21. L. S. Ornstein and W. R. van Wijk, Physica 1, 235
(1933). See also

22. W. R. van Wijk, Physica 3, 1111 (1936). Earlier,
but somewhat less general treatment along the same lines
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23. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36,
823 (1930). In the foregoing papers the discussion has been
carried out only for the case of one-dimensional motion.
In the text we have treated the general three-dimensional
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§3.—See Ornstein and Wijk (reference 21); also

24. G. E. Uhlenbeck and S. Goudsmidt, Phys. Rev. 34,
145 (1929).

25. G. A.van Lear and G. E. Uhlenbeck, Phys. Rev. 38,
1583 (1931).

§4.—The passage to a differential equation for the de-
scription of the Brownian motion of a free particle in the
velocity space was achieved by

26. A. D. Fokker, Ann. d. Physik 43, 812 (1914). A more
general discussion of this problem is due to

27. M. Planck, Sitz. der preuss. Akad. p. 324 (1917).
See also references 21 and 23; further,

28. Lord Rayleigh, Scientific Papers, Vol. 111, p. 473.

29. L. S. Ornstein, Versl. Acad. Amst. 26, 1005 (1917);
also Konink, Akad. Wetenschap. Amsterdam 20, 96 (1917).

30. H. C. Burger, Versl. Acad. Amst. 25, 1482 (1917).

31. L. S. Ornstein and H. C. Burger, Versl. Acad. Amst.
27, 1146 (1919); 28, 183 (1919); also Konink. Akad.
Wetenschap. Amsterdam 21, 922 (1918).

Earlier attempts to generalize Liouville’s equation of
classical dynamics to include Brownian motion are con-
tained in

32. O. Klein, Arkiv for Matematik, Astronomi, och
Fysik 16, No. 5 (1921); and

33. H. A. Kramers, Physica 7, 284 (1940).

The passage to a differential equation in configuration
space was first achieved by

34. M. v. Smoluchowski, Ann. d. Physik 48, 1103 (1913);
see also,

35. R. Fiirth, Ann. d. Physik 53, 177 (1917).

In the text the discussion of the various differential
equations has been carried out more generally and more
completely than in the references given above; this is
particularly true of the discussion relating to the generaliza-
tion of the Liouville equation of classical dynamics (sub-
sections, ii-v).

§5.—See H. A. Kramers (reference 33).

Approaches to the problem of the Brownian motion
somewhat different to the one we have adopted are con-
tained in

36. G. Krutkov, Physik. Zeits. der Sowjetunion 5, 287
(1934). See also the various articles by the same author in
C. R. Acad. Sci. USSR during the years (1934) and (1935).

37. S. Bernstein, C. R. Acad. Sci. USSR, p. 1 (1934),
and p. 361 (1934). A more particularly mathematical dis-
cussion of the problems of Brownian motion has been
given by

38. J. L. Doob, Ann. Math. 43, 351 (1942); see also the
references given in this paper.

Chapter III

The following general references may be noted.

39. M. v. Smoluchowski, reference 6(b).

40. A. Sommerfeld, “Zum Andenken an Marian von
Smoluchowski,” Physik. Zeits. 18, 533 (1917).

41, R. Fiirth, Physik. Zeits. 20, 303, 332, 350, 375 (1919);
also reference 16.

42. H. Freundlich, Kapillarchemie (Leipzig, 1930-1932),
Vols. I and II; see particularly pp. 485-510 in Vol. I and
pp. 140-162 in Vol. II.

43. The Svedberg, Die Existenz der Molekule (Leipzig,
1912).

In reference 39 we have an extremely valuable account
of the entire subject of Brownian motion and molecular
fluctuations; there exists no better introduction to this
subject than these lectures of Smoluchowski. In reference
40 Sommerfeld gives a fairly extensive bibliography of
Smoluchowski’s writings.

§1.—The theory of density fluctuations as developed by
Smoluchowski represents one of the most outstanding
achievements in molecular physics. Not only does it
quantitatively account for and clarify a wide range of
physical and physico-chemical phenomena, it also intro-
duces such fundamental notions as the ‘“probability after-
effect”” which are of very great significance in other con-
nections (see Chapter 1V).

44. M. v. Smoluchowski, Wien. Ber. 123, 2381 (1914);
see also Physik. Zeits. 16, 321 (1915) and Kolloid Zeits.
18, 48 (1916). For discussions of the problem of density
fluctuations prior to the introduction of the notion of the
“speed of fluctuations’ see

45. M. v. Smoluchowski, Boltzmann Festschrift (1904),
p. 626; Bull. Acad. Cracovie, p. 1057, 1907; Ann. d. Physik
25, 205 (1908). Also

46. R. Lorenz and W. Eitel, Zeits. f. physik. Chemie 87,
293, 434 (1914).

It is of some interest to recall that referring to his devi-
ation of the formulae for (A,)av and (A2 [Egs. (356) and
(358)] Smoluchowski says, ‘““Aus diesem komplizierten
Formeln [referring to the formula for W(n; m)] lassen sich
mittels verwickelter summationen merkwurdigerweise
recht einfache resultate fur die durschschnittliche Anderung
der Teilchenzahl ableiten. . . . So wie fur das Anderungs-
quadrat bei unbestimmter Anfangszahl » [Eq. (363)].”
This led to some heated discussion whether these formulae
cannot be derived more simply; for example, see

47. L. S. Ornstein, Konink. Akad. Wetenschap. Am-
sterdam 21, 92 (1917). But neither Ornstein nor Smo-
luchowski seems to have noticed that the formulae for
(As)av and {A.2)av can be derived very directly from the
fact that the transition probability W(n;m) is the sum
(in a technical sense) of a Bernoulli and a Poisson dis-
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tribution; it is to this fact that the simplicity of the results
are due.

§2.—Comparisons between the predictions of his theory
with the data of colloid statistics were first made by
Smoluchowski himself (reference 44). The experiments
which were used for these first comparisons were those of

48. The Svedberg, Zeits. f. physik. Chemie 77, 147
(1911); see also references 43 and 46. But precision experi-
ments carried out with expressed intention of verifying
Smoluchowski’s theory are those of

49. A. Westgren, Arkiv for Matematik, Astronomi, och
Fysik 11, Nos. 8 and 14 (1916) and 13, No. 14 (1918).

An interesting application of Smoluchowski’s theory to
a problem of rather different sort has been made by Fiirth:

50. R.Fiirth, Physik. Zeits. 19,421 (1918); 20, 21 (1919).
Fiirth made systematic counts of the number of pedes-
trians in a block every five seconds. This interval of five
seconds was chosen because the length of the block was
such that a pedestrian observed in the block on one
occasion has an appreciable probability of remaining in the
same block when the next observation is made five seconds
later. We can, accordingly, define a probability after-effect
factor P (=vr/a, where v is the average speed of a pedes-
trian, 7 the chosen interval of time and a the length of the
block), and Smoluchowski’s theory applies. A statistical
analysis of this data showed that the agreement with the
theory is excellent. It is amusing that by systematic counts
of the kind made by Fiirth it is possible actually to deter-
mine the average speed of a pedestrian!

§3.—The theory outlined in this section is derived from

51. M. v. Smoluchowski, Wien. Ber. 124, 339 (1915);
see also references 39 and 41.

§4.—Among the early discussions on the compatibility
between the notions of conventional thermodynamics and
the then new standpoint of the kinetic molecular theory,
we may refer to

52. J. Loschmidt, Wien. Ber. 73, 139 (1876); 75, 67
(1877).

53. L. Boltzmann, Wien. Ber. 75, 62 (1877); 76, 373
(1877); also Nature 51, 413 (1895) and Vorlesungen iber
Gas Theorte (Leipzig, 1895) Vol. I, p. 42 (or the reprinted
edition of 1923).

54. E. Zermelo, Ann. d. Physik 57, 485 (1896); 59, 793
(1896).

55. L. Boltzmann, Ann. d. Physik 57, 773 (1896); 60,
392 (1897).

Smoluchowski’s fundamental discussions of the limits of
validity of the second law of thermodynamics are contained
in

56. M. v. Smoluchowski, Physik. Zeits. 13, 1069 (1912);
14, 261 (1913). See also references 39 and 51.

It is somewhat disappointing that the more recent dis-
cussions of the laws of thermodynamics contain no relevant
references to the investigations of Boltzmann and Smo-
luchowski [e.g., P. W. Bridgman, The Nature of Thermo-
dynamics (Harvard University Press, 1941)7]. The absence
of references, particularly to Smoluchowski, is to be
deplored since no one has contributed so much as Smo-
luchowski to a real clarification of the fundamental issues
involved.
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For an exhaustive discussion of the foundations of sta-
tistical mechanics, see

57. P. and T. Ehrenfest, Begriffliche Grundlagen der
Statistischen Auffassung in der Mechanik, Encyklopadie der
Mathematischen Wissenschaften (1911), Vol. 4, p. 4. And
for Carathéodory’s version of thermodynamics see

57a. S. Chandrasekhar, An Introduction to the Study of
Stellar Structure (University of Chicago Press, 1939), Chap.
I, pp. 11-37.

§5.—See Smoluchowski, reference 39; also

58. M. v. Smoluchowski, Ann. d. Physik 48, 1103 (1915).

59. R. Fiirth, Ann. d. Physik 53, 177 (1917).

§6.—See Smoluchowski reference 39; also

60. M. v. Smoluchowski, Zeits. f. physik. Chemie 92, 129
(1917).

61. R. Zsigmondy, Zeits. f. physik. Chemie 92, 600
(1917). The papers 60 and 61 contain references to the
earlier literature on the subject of coagulation. For the
more recent literature see Freundlich (reference 42, par-
ticularly Vol. II, pp. 140-162).

§7.—See

62. H. A. Kramers, Physica 7, 284 (1940). Also,

63. H. Pelzer and E. Wigner, Zeits. f. physik. Chemie,
B15, 445 (1932).

An aspect of the theory of Brownian motion we have
not touched upon concerns the natural limit set by it to
all measuring processes. But an excellent review of this
entire field exists:

64. R. B. Barnes and S. Silverman, Rev. Mod. Phys.
6, 162 (1934).

Chapter IV

The ideas developed in this chapter are in the main taken
from

65. S. Chandrasekhar, Astrophys. J. 94, 511 (1941).

66. S. Chandrasekhar and J. von Neumann, Astrophys.
J. 95, 489 (1942).

67. S. Chandrasekhar and J. von Neumann, Astrophys.
J. 97, 1, (1943).

§1.—See references 65, 66, and 67; also

68. S. Chandrasekhar, Principles of Stellar Dynamics
(University of Chicago Press, 1942), Chapters II and V.

§2.—The problem considered in this section is clearly
equivalent to finding the probability of a given electric
field strength at a point in a gas composed of simple ions.
This latter problem was first considered by Holtsmark:

69. J. Holtsmark, Ann. d. Physik 58, 577 (1919); also
Physik. Zeits. 20, 162 (1919) and 25, 73 (1924). Among
other papers on related subjects we may refer to

70. R. Gans, Ann. d. Physik 66, 396 (1921).

71. P. Hertz, Math. Ann. 67, 387 (1909).

72. R. Gans, Physik. Zeits. 23, 109 (1922).

73. C. V. Raman, Phil. Mag. 47, 671 (1924).

§3.—See references 66 and 67. See also three further
papers on ‘““Dynamical Friction” by Chandrasekhar in
forthcoming issues of The Astrophysical Journal where
further applications of the Fokker-Planck equation will be
found.



