
Characteristic Functions

In English one uses the term “characterise” to talk about a description of all
the essential features of something or somebody. In mathematics, we similar
define the characters or characteristics of some mathematical object for the same
purpose. The hope is that the characteristics are easier to handle than the
objects themselves!
We have already seen how the mean and variance of a random variable give
us some idea of the nature of its distribution. The charactersitic function of a
distribution (as we shall see) defines it completely.
Recall that for a (real-valued) random variable X and a function g of one real
variable, we defined the notion of mathematical expectation E(g(X)).
We first deal with the case of a discrete random variable X. In that case,
there is a discrete set D of real numbers (such as the set of integers) so that
P (X = a) = pa for a ∈ D and

∑
a∈D pa = 1. In this case, we have the formula

E(g(X)) =
∑
a∈D

g(a)pa

On the other hand suppose that Y is a random variable for which P (Y ≤ a) =∫ a

−∞ fY (s)ds for a suitable (density) non-negative function fY . In that case, we
have the formula

E(g(Y )) =
∫ ∞
−∞

g(s)fY (s)ds

The definitions for other random variables can be given via limits of either of
these two cases.
We note that, as in the case of the mean, the expectation E(g(X)) only depends
on the distribution of X so that if X and Y have the same distribution, then
E(g(X)) = E(g(Y )).
Given a random variable X, its characteristic function is defined as the function
that assigns to a real number t, the expectation φX(t) = E(etX

√
−1). In case,

you feel uncomfortable with expectations of complex numbers you can also think
of this as the pair of real numbers

φX(t) = (E(cos(tX)), E(sin(tX))) = E(cos(tX)) + E(sin(tX))
√
−1

We check that

|φX(t)|2 = E(cos(tX))2 + E(sin(tX))2 ≤ E(cos(tX)2 + sin(tX)2) = 1

Hence, we can think of φ as a map from the real line to the unit disk; further,
we note that φX(0) = 1.
One can show that φ is a uniformly continuous function of t. Recall that this
means that, for every c > 0, there is a constant d > 0 so that distance between
φX(t1) and φX(t2)) is less than c whenever |t2 − t1| < d.
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We note that

φX(−t) = E(cos(−tX))+E(sin(−tX))
√
−1 = E(cos(tX))+E(− sin(tX))

√
−1 = φX(t)

which is the conjugate complex number of the complex number φX(t). Similarly,
φ−X(t) = φX(t).
By arguments similar to the ones used to prove the results about variance, one
can show that if Xi for i = 1, . . . , n are independent random variables, then

E(
∏

i

etXi

√
−1) =

∏
i

E(etXi

√
−1)

It follows easily that

φ∑
i

Xi
(t) = E(exp(t

∑
i

Xi

√
−1)) = E(

∏
i

etXi

√
−1) =

∏
i

φXi
(t)

Thus, the sum of independent random variables has as characteristic function
the product of the individual characteristic functions.
Combining the results of two identical independent experiments X and Y , we
see that φX−Y (t) = |φX(t)|2 is a non-negative real-valued uniformly continuous
function with values between $0 and 1.
In the case where X is a discrete random variable with distribution given by
P (X = a) = pa for a in a discrete set D. We see that the characteristic function
is:

φX(t) =
∑
a∈D

pa exp(at
√
−1)

where pa ≥ 0 are the probabilities; in particular,
∑

a∈D pa = 1. Thus,∣∣∣∣∣∑
a∈D

pa exp(at
√
−1)

∣∣∣∣∣ ≤∑
a∈D

∣∣pa exp(at
√
−1)

∣∣ ≤∑
a∈D

pa = 1

so the above sum converges absolutely.
Now, if D has only one element a, then X = Ha is a “random” variable
which takes the value a with probability 1, then its distribution function is the
Heaviside function Ja that is 0 below a and 1 for a and above. In this case
φHa

(t) = exp(at
√
−1) is the standard periodic function with period 2π/a.

Given functions g and h and a non-negative number p with 0 ≤ p ≤ 1, we can
form the function pg + (1− p)h. This is called a convex linear combination of f
and g; the terminology, comes from geometry where a point on the line segment
joining vectors ~v and ~u is given by p~v + (1 − p)~u for varying values of p with
0 ≤ p ≤ 1.
We see that the distribution function FX of a general discrete random variable
X takes the form

FX =
∑
a∈D

paJa
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In other words, it is a convex linear combination of the Heaviside distribution.
The formula given above shows that the characteristic function is the analogous
convex linear combination of the characteristic functions φHa

.

This is true in general. Suppose that the distribution function F is a convex
linear combination F =

∑
i piFi of distribution functions with pi non-negative

and
∑

i pi = 1. We then then have φF =
∑

i piφFi
.

Since the characteristic function is supposed to determine the distribution,
we expect it to determine the mean, variance and other moments, if they
exist. To start with, we note that the derivative (w.r.t. t) of exp(at

√
−1)

is a
√
−1. It follows easily that for a discrete random variable X, we have

dφX/dt = E(X)
√
−1. Similarly, d2φX/dt

2 = −E(X2). This can then be
generalised to other distributions by limiting arguments.

Using the Taylor approximation, we see that

φX(t) = 1 + E(X)t
√
−1− E(X2)t2 + o(t2)

as t goes to 0. In particular, we see that if m is the expectation of X and σ its
standard deviation, and Y = (X −m)/σ, then

φY (t) = 1− t2 + o(t2)

If Xi are independent random variables with the same distribution as X and
Yi = (Xi −m)/σ, then we see that

φY1+···+Yn(t) = (1− t2 + o(t2))n

So, if we put Zn = (Y1 + · · · + Yn)/
√
n with is

√
n times the rolling average

(Y1 + · · ·+ Yn)/n, then

φZn
(t) =

(
1− t2 + o(t2)/

√
n

n

)n

One can then show quite easily that the right-hand side converges to e−t2/2 for
a fixed t as n goes to infinity. This is the key to the proof of the Central Limit
Theorem.

Bochner’s Theorem

As usual, for a matrixM with complex entries, letM† denote the transpose of the
matrix whose entries are the complex conjugates; in other words (M†)i,j = Mj,i.
If M is a p× q matrix then M† is a q × p matrix.

Recall that a square matrix is said to be Hermitian if M† = M . We can think
of ~v as an 1× r matrix. It follows that ~v† · ~v is an r × r Hermitian matrix.
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Recall that a Hermitian matrix M is said to be positive semi-definite if the
complex number (1× 1 matrix) ~w ·M ~w† is non-negative for all vectors ~w of the
appropriate dimension. We check

~w ·
(
~v† · ~v

)
· ~w† = 〈w, v〉〈v, w〉 = |〈w, v〉|2 ≥ 0

This shows that H = ~v†~v is a positive semi-definite matrix.

Returning to the study of exp(at
√
−1, note that for any tuple t = (t1, . . . , tr) of

real numbers we get a vector of complex numbers

~vt =
(
exp

(
at1
√
−1
)
, . . . , exp

(
atr
√
−1
))

It follows that Ht = ~vt
†~vt is a positive definite matrix. We note that Ht is can

directly be described as

(Ht)i,j = exp
(
a (ti − tj)

√
−1
)

More generally, we can introduce the matrix Ht,X with entries given by

(Ht,X)i,j = φX(ti − tj)

As a convex linear combination of the semi-definite matrices above, it too is
semi-definite.

It turns out that this is a fundamental property of characteristic functions.
Bochner’s theorem states that if a function φ(t) that takes values in the unit
disk (in the complex plane) has the property that the matrix Ht,X is positive
semi-definite for any tuple t1, . . . , tr) (and for any r), and φ(0) = 1 is a point of
continuity of φ, then φ is the characteristic function of a probability distribution.

Moreover, one can show that:

- the characteristic function uniquely determines the distribution

- pointwise convergence of distribution functions is equivalent to
pointwise convergence of the characteristic functions

Summary

To every random variable X we associate a characteristic function φX . This has
the following properties:

• The characteristic function depends only on the distribution function FX .
Conversely, if φX = φY then X and Y have the same distribution.

• The characteristic function takes values in the unit disk in the complex
plane and φX(0) = 1.
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• The characteristic function is a uniformly continuous function from the
real line to the unit disk.

• In the case of the “constant” random variable Ha that takes the value a
with probability 1, the characteristic function is exp(at

√
−1).

• If the distribution function FX is a convex linear combination
∑

i piFXi of
distribution functions, then we have φX =

∑
i piφXi .

• The characteristic function of a sum of independent random variables is
the product of their individual characteristic functions.

• We have φaX(t) = φX(at).

• A function φ from the real line to the unit disk with φ(0) = 1is the
characteristic function of a random variable if and only if, for any tuple
t = (t1, . . . , tj), the matrix with (i, j)-th entry φ(ti − tj) is Hermitian and
positive semi-definite.

• A sequence of random variables Xi converges in distribution to a random
variable X if and only if the characteristic functions φXi converge to the
characteristic function φX .

• The expectation of a random variable X can be computed from its charac-
teristic function by the formula dφX/dt = E(X)

√
−1. The second moment

can be computed using d2φX/dt
2 = −E(X2).

The best way to understand characteristic functions is to compute them for some
standard distributions. This has been given in the assignment associated with
these lectures.
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