## Characteristic Functions

1. Check the following summations as a way of verifying the formulas for characteristic functions of some discrete probability distributions.
(a) For the Binomial distribution with $p+q=1$

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \exp (k t \sqrt{-1})=\left(q+p e^{t \sqrt{-1}}\right)^{n}
$$

(b) For the Poisson distribution

$$
\sum_{k=0}^{\infty} \frac{c^{k}}{k!} \exp (-c+k t \sqrt{-1})=\exp \left(c\left(e^{t \sqrt{-1}}-1\right)\right)
$$

(c) For the Negative Binomial distribution

$$
\sum_{k=0}^{\infty}\binom{n+k-1}{k} p^{n} q^{k} \exp (k t \sqrt{-1})=\left(\frac{p}{1-q e^{t \sqrt{-1}}}\right)^{n}
$$

2. Check the following integrals as a way of verifying the formulas for characteristic functions of some probability densities.
(a) For the uniform density

$$
\frac{1}{2} \int_{-1}^{1} \exp (a t \sqrt{-1}) d a=\frac{\sin (t)}{t}
$$

Justify the limits of the integral.
(b) For the Poisson density (exponential distribution)

$$
\int_{0}^{\infty} c \exp (-c a+a t \sqrt{-1}) d a=\frac{c}{c-t \sqrt{-1}}
$$

where $c>0$.
(c) For the normal density

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-a^{2} / 2+a t \sqrt{-1}\right) d a=\exp \left(-t^{2} / 2\right)
$$

3. Justify the following limits either directly or using Probability theory:
(a) $\left((1-c / n)+(c / n) e^{t \sqrt{-1}}\right)^{n}$ converges to $\exp \left(c\left(e^{t \sqrt{-1}}-1\right)\right)$ as $n$ goes to infinity.
(b) $\cos (t / \sqrt{n})^{n}$ goes to $\exp \left(-t^{2} / 2\right)$ as $n$ goes to infinity.
(c) If $c_{n}$ goes to $c$ as $n$ goes to infinity, then $\left(1-c_{n} / n\right)^{n}$ goes to $e^{-c}$ as $n$ goes to infinity.
4. Let $X$ be the random variable that gives the difference of the numbers appearing when two dice are rolled. Calculate the characteristic function of $X$.
