The Normal Distribution

If X_{k} is the random variable that counts the number of Heads in a sequence of k independent coin flips of a coin that returns Head with a probability of p, then X_{k} follows the Binomial distribution. In other words:

$$
P\left(X_{k}=r\right)=\binom{k}{r} p^{r}(1-p)^{k-r}
$$

We have seen earlier that $E\left(X_{k}\right)=k p$ and $\sigma^{2}\left(X_{k}\right)=k p(1-p)$.
Now, $k p$ goes to infinity as k goes to infinity. Hence, this distribution does not have a nice limit as it stands. Even if we take $Y_{k}=X_{k}-k p$, then this variable does not have a nice limit since $\sigma^{2}\left(Y_{k}\right)=\sigma^{2}\left(X_{k}\right)=k p(1-p)$ which goes to infinity as k goes to infinity. Hence, we consider will consider the limit of the "normalised" distributions $Z_{k}=Y_{k} / \sqrt{k p(1-p)}$ which have the property $E\left(Z_{k}\right)=0$ and $\sigma^{2}\left(Z_{k}\right)=1$ for all k.

Limits of Binomial Distribution

We will make use of the Stirling approximation which says that there is a constant C so that:

$$
k!\simeq C k^{k} e^{-k} \sqrt{k} \text { as } k \rightarrow \infty
$$

(Recal the $f(k) \simeq g(k)$ as k goes to infinity means that the ratio of these two functions goes to 1 as k goes to infinity.)
We wish to consider the limit of $P\left(Z_{k}=r\right)=\binom{k}{r} p^{r}(1-p)^{k-r}$ as k approaches infinity for all those r such that $x=(r-k p) / \sqrt{k p(1-p)}$ remains bounded by some constant A. For each k large enough, we pick such an r and denote it by r_{k}, we denote the corresponding x as x_{k}. In order to simplify notation, we use $q=(1-p)$ and we drop the subscripts on r_{k} and x_{k} (but we should not forget the dependence!). Our claim is that

$$
\binom{k}{r} p^{r} q^{k-r} \simeq \frac{e^{-x^{2} / 2}}{C \sqrt{k p q}}
$$

as k approaches infinity. Note that the right hand side is independent of the chosen constant A, but we need to fix A in order to obtain this asymptotic formula.

First of all we note that $r=k p+x \sqrt{k p q}$ and easily calculate that $k-r=$ $k q-x \sqrt{k p q}$. Since $\sqrt{k}=o(k)$ for k going to infinity and $|x|<A$ remains bounded, we see that $r \simeq k p$ and $k-r \simeq k q$ as k goes to infinity. In particular, r and $k-r$ must both go to infinity as well. Hence, we can use the Stirling approximation for k, r and $k-r$. This gives

$$
\binom{k}{r} p^{r} q^{k-r} \simeq(1 / C) \frac{k^{k} e^{-k} \sqrt{k} p^{r} q^{k-r}}{\left(r^{r} e^{-r} \sqrt{r}\right) \cdot\left((k-r)^{k-r} e^{-(k-r)} \sqrt{k-r}\right)}
$$

Now the numerator can be "separated" using the following:

$$
k^{k} p^{r} q^{k-r}=(k p)^{r}(k q)^{k-r} \text { and } e^{-k}=e^{-r} \cdot e^{-(k-r)}
$$

We use these to get

$$
\binom{k}{r} p^{r} q^{k-r} \simeq(1 / C) \sqrt{\frac{k}{r(k-r)}}\left(\frac{k p}{r}\right)^{r}\left(\frac{k q}{k-r}\right)^{k-r}
$$

Now we substitute

$$
k p=r-x \sqrt{k p q} \text { and } k q=(k-r)+x \sqrt{k p q}
$$

in the latter two terms to get

$$
\left(\frac{k p}{r}\right)^{r}=\left(1-\frac{x \sqrt{k p q}}{r}\right)^{r} \text { and }\left(\frac{k q}{k-r}\right)^{k-r}=\left(1+\frac{x \sqrt{k p q}}{k-r}\right)^{k-r}
$$

Now $x \sqrt{k p q} / r \simeq x \sqrt{q / k p} \rightarrow 0$ as k goes to infinity. Similarly $x \sqrt{k p q} /(k-r) \rightarrow 0$ as k goes to infinity. Hence, for large enough k we can use the approximation $\log (1+t)=t-t^{2} / 2+g(t)$ with $|g(t)|<t^{3} / 3$ to get

$$
\log \left(\frac{k p}{r}\right)^{r}=r\left(-\frac{x \sqrt{k p q}}{r}-\frac{x^{2} k p q}{2 r^{2}}+g(-x \sqrt{k p q} / r)\right)
$$

and

$$
\log \left(\frac{k q}{k-r}\right)^{k-r}=(k-r)\left(\frac{x \sqrt{k p q}}{k-r}-\frac{x^{2} k p q}{2(k-r)^{2}}+g(x \sqrt{k p q} /(k-r))\right)
$$

The first terms cancel, while the second terms give

$$
-\frac{x^{2} k^{2} p q}{2 r(k-r)}
$$

Finally, we have

$$
|r g(-x \sqrt{k p q} / r)+(k-r) g(x \sqrt{k p q} /(k-r))| \leq\left(A^{3} / 3\right)\left(\frac{(k p q)^{3 / 2}}{r^{2}}+\frac{(k p q)^{3 / 2}}{(k-r)^{2}}\right)
$$

Now, $k p / r$ goes to 1 as k goes to infinity so $(k p q)^{3 / 2} / r^{2}$ goes to $q^{3 / 2} / r^{1 / 2}$ as k goes to infinity. Since r goes to infinity as k goes to infinity, we see that $(k p q)^{3 / 2} / r^{2}$ goes to 0 as k goes to infinity. Similarly, $(k p q)^{3 / 2} /(k-r)^{2}$ goes to 0 as k goes to infinity.

Combining the above calculations, we get

$$
\left(\frac{k p}{r}\right)^{r} \cdot\left(\frac{k q}{k-r}\right)^{k-r} \simeq \exp \left(-\frac{x^{2} k^{2} p q}{2 r(k-r)}\right)
$$

as k goes to infinity. Putting it all together

$$
\binom{k}{r} p^{r} q^{k-r} \simeq(1 / C) \sqrt{\frac{k}{r(k-r)}} \exp \left(-\frac{x^{2} k^{2} p q}{2 r(k-r)}\right.
$$

Finally, we use $r \simeq k p$ and $k-r \simeq k q$ to simplify this to

$$
\binom{k}{r} p^{r} q^{k-r} \simeq(1 / C) \sqrt{\frac{1}{k p q}} \exp \left(-\frac{x^{2}}{2}\right)
$$

