
The Normal Distribution

If Xk is the random variable that counts the number of Heads in a sequence of k
independent coin flips of a coin that returns Head with a probability of p, then
Xk follows the Binomial distribution. In other words:

P (Xk = r) =
(
k

r

)
pr(1− p)k−r

We have seen earlier that E(Xk) = kp and σ2(Xk) = kp(1− p).

Now, kp goes to infinity as k goes to infinity. Hence, this distribution does
not have a nice limit as it stands. Even if we take Yk = Xk − kp, then this
variable does not have a nice limit since σ2(Yk) = σ2(Xk) = kp(1 − p) which
goes to infinity as k goes to infinity. Hence, we consider will consider the limit
of the “normalised” distributions Zk = Yk/

√
kp(1− p) which have the property

E(Zk) = 0 and σ2(Zk) = 1 for all k.

Limits of Binomial Distribution

We will make use of the Stirling approximation which says that there is a constant
C so that:

k! ' Ckke−k
√
k as k →∞

(Recal the f(k) ' g(k) as k goes to infinity means that the ratio of these two
functions goes to 1 as k goes to infinity.)

We wish to consider the limit of P (Zk = r) =
(

k
r

)
pr(1− p)k−r as k approaches

infinity for all those r such that x = (r − kp)/
√
kp(1− p) remains bounded by

some constant A. For each k large enough, we pick such an r and denote it by
rk, we denote the corresponding x as xk. In order to simplify notation, we use
q = (1− p) and we drop the subscripts on rk and xk (but we should not forget
the dependence!). Our claim is that(

k

r

)
prqk−r ' e−x2/2

C
√
kpq

as k approaches infinity. Note that the right hand side is independent of the
chosen constant A, but we need to fix A in order to obtain this asymptotic
formula.

First of all we note that r = kp + x
√
kpq and easily calculate that k − r =

kq − x
√
kpq. Since

√
k = o(k) for k going to infinity and |x| < A remains

bounded, we see that r ' kp and k − r ' kq as k goes to infinity. In particular,
r and k − r must both go to infinity as well. Hence, we can use the Stirling
approximation for k, r and k − r. This gives(

k

r

)
prqk−r ' (1/C) kke−k

√
kprqk−r

(rre−r
√
r) ·

(
(k − r)k−re−(k−r)

√
k − r

)
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Now the numerator can be “separated” using the following:

kkprqk−r = (kp)r(kq)k−r and e−k = e−r · e−(k−r)

We use these to get(
k

r

)
prqk−r ' (1/C)

√
k

r(k − r)

(
kp

r

)r (
kq

k − r

)k−r

Now we substitute

kp = r − x
√
kpq and kq = (k − r) + x

√
kpq

in the latter two terms to get(
kp

r

)r

=
(

1− x
√
kpq

r

)r

and
(

kq

k − r

)k−r

=
(

1 + x
√
kpq

k − r

)k−r

Now x
√
kpq/r ' x

√
q/kp→ 0 as k goes to infinity. Similarly x

√
kpq/(k−r)→ 0

as k goes to infinity. Hence, for large enough k we can use the approximation
log(1 + t) = t− t2/2 + g(t) with |g(t)| < t3/3 to get

log
(
kp

r

)r

= r

(
−x
√
kpq

r
− x2kpq

2r2 + g(−x
√
kpq/r)

)
and

log
(

kq

k − r

)k−r

= (k − r)
(
x
√
kpq

k − r
− x2kpq

2(k − r)2 + g(x
√
kpq/(k − r))

)
The first terms cancel, while the second terms give

− x2k2pq

2r(k − r)

Finally, we have

|rg(−x
√
kpq/r) + (k − r)g(x

√
kpq/(k − r))| ≤ (A3/3)

(
(kpq)3/2

r2 + (kpq)3/2

(k − r)2

)
Now, kp/r goes to 1 as k goes to infinity so (kpq)3/2/r2 goes to q3/2/r1/2 as
k goes to infinity. Since r goes to infinity as k goes to infinity, we see that
(kpq)3/2/r2 goes to 0 as k goes to infinity. Similarly, (kpq)3/2/(k − r)2 goes to 0
as k goes to infinity.

Combining the above calculations, we get(
kp

r

)r

·
(

kq

k − r

)k−r

' exp
(
− x2k2pq

2r(k − r)

)
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as k goes to infinity. Putting it all together(
k

r

)
prqk−r ' (1/C)

√
k

r(k − r) exp(− x2k2pq

2r(k − r)

Finally, we use r ' kp and k − r ' kq to simplify this to(
k

r

)
prqk−r ' (1/C)

√
1
kpq

exp
(
−x

2

2

)

3


	The Normal Distribution
	Limits of Binomial Distribution


