Review of Analysis

Since we are going to use limits in a significant way, it will be good to review
some key ideas from analysis.

Asymptotic Behaviour

It is useful to compare the behaviour of two functions f(x) and g(z) as x
approaches some value (say 0) or approaches infinity. Since z approaching xg is
the same as 1/(x — ) approaching infinity and that is the most interesting case
for us, we will state the conditions only in the case of x approaching infinity.

We say that f(z) = O(g(x)) as z approaches infinity if there is a constant M
so that f(z) < Mg(z) for all sufficiently large  (more precisely, for 2 > N for
some N). In other words, f(z) is bounded by a constant multiple of g(z) when
x is sufficiently large.

We say that f(x) = o(g(x)) as x approaches infinity if for any positive integer n,
f(x) < g(z)/n for sufficently large = (more precisely, for z > N,, for some N,
which is allowed to depend on n). In other words, f(z) is much smaller than
g(x) for sufficiently large z.

We say that f(z) ~ g(z) as x approaches infinity if f(z)/g(x) approaches 1 as
x approaches infinity. In this case we say that f(x) and g(z) are asymtotically
equal as x approaches infinity.

A Poynomial P(x) = cox® + 2"~ + .. .. k with ¢y # 0 is called a polynomial
of degree k. We have P(z) = O(z*) and P(z) = o(z™) for m > k. In fact, we
have P(z) ~ cox*.

Some Series and Functions

We have already discussed the geometric series Z;OZO 2* which converges for
lz] < 1to 1/(1 —x). We replace x by —x to get > p(—2)* as summing to
1/(1 + z) for |x| < 1.

In fact, this convergence is absolute for |z| < 1 — 1/r for any positive r. This
makes the formulas work even if we integrate or differentiate term by term! So,
by differentiating the first series r times and dividing by r!, we get the formula:

1 > (k+r—1 &
<1—x>r+1zz< r )x
k=0

We have already used this formula in order to study the Negative Binomial
distribution.



Integrating this series once, we obtain:

k k+1

T 0o
/01+t Z k+1

k=0

The series (on the right-hand side) converges only for |z| < 1. However, the
integral (on the left-hand side) makes sense for all values of x. Hence, we define
log(z) = [ (dt/t) and only use the series expansion for |z| < 1.

The integral log(z f1 (dt/t) has the interesting property

og(ey) ~ log(a) = [ (at/t) = [ (du/u) = tog(a)

obtained by the substitution v = zt. In other words, = — log(z) is a group
isomomorphism from the multiplicative group of positive real numbers to the
additive group of all real numbers. This makes it a very useful function. (Note
that for Mathematicians log always means the natural logarithm.) It follows
that for each positive x there is a unique y so that log(y) = x. Moreover, log is
order-preserving.

The inverse homomorphism exp is defined by log(exp(z)) = x. By the chain
rule, we see that

dlog(t) dexp(z) _ 1 dexp(z)

d
1= —log(exp(x))) = di |t:9XP(fﬂ) dx exp(x) dx

dx

It follows that dexp(z)/dx = exp(x). Thus, the Taylor series for exp(z) =
Yoo 2% /k!. By the comparison test one can show that this series converges for
all values of x.

Since exp is the inverse of a group isomorphism, it too is a group isomorphism
from the additive group of real numbers to the multiplicative group of positive
real numbers. For this reason, we often use the notation e = exp(1) and write

e’ = exp(x).

Asymptotic formulas

The function 1/t can be compared with the step functions I(t) = 1/[t| and
c(t) = 1/[t]; we have ¢(t) < 1/t <I(t) for t > 1. Tt follows that

S (1/k) < log(n) < S(1/K)
k=2 k=1

We see that >, _,(1/k) is asymptotic to log(n). In fact, we see that
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is a bounded increasing sequence and so it converges to a constant -; this
constant is called the Euler-Mascheroni constant. In particular, since log(n) goes
to infinity as n goes to infinity, we have:
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We have dlog(z)/dx = 1/x < 1 for > 1. This means that log(z) < (1 — ) for
x > 1 by integrating both sides. On the other hand dlog(x)/dx = 1/x > 1 for
0 < z < 1. This again means that log(z) < x — 1 for 0 < z < 1 by integrating
both sides. Since log(1) = 0, we see that

log(z) <z —1forallz >0

When z is large, we can do better. We have dlog(x)/dx = 1/x < 1/n for z > n.
It follows that log(z) < log(n) + (1/n)x for x > n. From this we can deduce
that log(z) = o(z) as x approaches infinity.

The initial expansion of log(1 + x) = 2 — 22/2 + g(x) gives us
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for |z| < 2/3 we see that this is < |z|3/3.

Fixing = and applying this to a/n for large n, we see see that nlog(l+z/n) ~ x
as n approaches infinity. It follows that exp(nlog(l 4+ z/n)) ~ exp(z) as n
approaches infinity. This is usually written as

lim (1 + E)n =¢e”
n
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Moreover, from the fact that log(1l 4+ 2/n) < x/n proved above, we see that this
limit is an increasing one.

We easily check that d(zlog(z) — x)/dx = log(z). It follows that

/ log(t)dt = nlog(n) —n+1
1

We can form the Trapezoidal approximation of the integral on the left-hand side

n—1 n
Z log(k + 1; — log(k) _ Zlog(k) _ %log(n) = log(n!) — %log(n)
k=1 k=1

The error in this approximation is given by

dn, =log(n!) — (n+1/2)log(n) +n —1



We will not go through a computation to show that this error approaches a fixed
limit as n goes to infinity. We compute

dpt1—dpn=(n+1/2)log(l+1/n)+1

Using the expression log(1 + z) = x — 2% /2 + g(z) we get

dnt1—dy = (n+1/2) (:L L + g(l/n)) —1= (1 - 12) —1+(n+1/2)g(1/n)
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For n > 2 we have |g(1/n)| < 1/3n? so that

1 n+1/2 )
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for some suitable constant c. Since > o~ | ¢/n? converges, by the comparison
test for series, we see that Y -, (d,41 — dy) converges to some number. The
sum 271:!;11 (dnt1 — dy) is easily calculated to be dy — d;. Hence, we see that
dn converges to some constant C' as N approaches infinity. In other words,

lim (log(n!) — (n+1/2)log(n) +n—-1)=C

n—oo

Exponentiating both sides gives us

for a suitable constant K. (We will eventually determine K as well!) The
approximation
n! ~ Kn"e "/n for large n

was found by de Moivre; after putting in the value of K it is called Stirling’s
approximation.
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