
Limits of Random Variables

One can show that a random variable X is a limit (in some suitable sense) of
a sequence of discrete random variables. The idea is similar the way in which
real numbers are limits of rational numbers or continuous functions are limits of
polynomial functions.

Even if we may never encounter real numbers in practice (for example, the actual
numerical result of a physical experiment or a computer calculation is always a
rational number!), the mathematical idealisation of a real number is useful in
many ways. for example, calculus can give us different ways to calculate the
same number by using a different limiting process which may be convenient.
This is then a good approxiation to the rational number we want.

Similarly, the limiting distributions of a (convergent) sequence of discrete vari-
ables may be computatable in a number of ways which have no obvious relation
with the original sequence.

Prime Numbers

Limiting behaviours are of interest. We know that there are infinitely many
prime numbers (theorem proved by Euclid). How are these numbers distributed.
Put it differently, if we choose a number at random between 2 and N what is
the probability pN that this number is prime?

Here is a heuristic argument. The probability that the number is not divisible
by 2 is (1 − 1/2), that it is not divisible by 3 is (1 − /3) and and so on. So
we can calculate the probability that the number is not divisible by a prime as
pN = (1− 1/2)(1− 1/3) · · · . Now, we see

1/p = (1 + 1/2 + 1/22 + . . . )(1 + 1/3 + 1/32 + . . . ) · · · = 1 + 1/2 + 1/3 + 1/4 + . . .

Since we are only considering numbers upto N we can only look at 1 + 1/2 +
1/3 + 1/4 + · · · + 1/N . This number is close to log(N) for large N . It folows
that p is approximately 1/ log(N).

The assertion that pN ' 1/ log(N) as N approches infinity, is called the Prime
Number Theorem. It was conjectured by Gauss and eventually proved by
Hadamard and de la Vallee Poussion independently. (Why is the above argument
not a proof? Which parts can be “fixed” and which are really hard?) The
statment f(x) ' g(x) as x approaches infinity is to be read as f(x) asymptotically
approaches g(x) as x approches infinity. Its precise meaning is that f(x)/g(x)
approaches 1 as x approaches infinity.

In a similar fashion, we would like to understand the asymptotic behaviour of
certain discrete probability distributions.
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Poisson Distribution

We start with a standard Binomial distributed random variable Y with parame-
ters k and p. In other words,

P (Y = r) =
(
k

r

)
pr(1− p)k−r

As seen earlier, we have E(Y ) = kp. Suppose we fix kp = c and allow k to
go to infinity, and try to understand the asymptotic behaviour. This is not
merely to exercise our “Mathematical Muscles”! Here is an example that may
be interesting to some people.

Suppose that an estimated c birds of a rare species have come onto IISER
campus. A bunch of k students learn to recognise the birds and go to different
parts of the campus looking for a bird of this species. If we assume that (a)
there are so few birds that each one is likely to spot only one bird and (b) the
birds no not move around so it is unlikely that the same bird is spotted by two
spotters, then the probability of a given spotter being successful is c/k. So the
probability of r spotters being successful is

(
k
r

)
(c/k)r(1− c/k)k−r. We can ask

for an estimage for happens as we increase the number of spotters, we can also
ask for an estimate of this probability when the number of spotters is very large
(compared with r and c).

To make such an estimate, we re-write the above expression as follows:(
k

r

)
(c/k)r(1− (c/k))k−r = cr

r! 1 · (1− 1/k) · · · (1− (r − 1)/k) (1− (c/k))k

(1− (c/k))r

Now, if r and c are fixed and k goes to infinity: - (1 − (a/k))r goes to 1 -
(1 − (c/k))k goes to exp(−c) = e−c In other words, as k goes to infinity this
probability has (cr/r!)e−c as its limit. The Poisson distribution is defined by
the probability mass function

P (X = r) = (cr/r!)e−c for r a non-negative integer

(We can check that this defines a distribution.)

Since the word “poisson” is the French word for “fish” it is interesting that this
distribution is a useful way to estimate the probability of r successes in a fishing
expedition where there are a fixed number of fish in a large pond and many
fishermen!

We can calculate the expectation of the Possion distribution

E(X) =
∞∑

r=0
r
cr

r! e
−c = c

∞∑
r=1

cr−1

(r − 1)!e
c = c

We can also ralculate the variance by observing that
∞∑

r=0
r(r − 1)c

r

r! e
−c = c2

∞∑
r=2

cr−2

(r − 2)!e
c = c2
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It follows that E(X2) = c2 + c so that σ2(X) = c.

Poisson Density

A different kind of limit can be found via the Negative Binomial distribution.

Let’s work with the case of k = 1. In this case, the random variable W counts
the number of Tails before getting one Head. Then P (W = r) = p(1− p)r. In
fact

P (W ≥ r) =
∞∑

s=r

p(1−p)s = p(1−p)r
∞∑

s=0
(1−p)s = p(1−p)r 1

1− (1− p) = (1−p)r

So P (W < r) = 1− (1− p)r. If we replace p by c/n and r by tn, this becomes
P (Tn < t) = 1− (1− (c/n))tn and we can take a limit as n goes to infinity. This
becomes P (T < t) = 1 − e−ct. We note that this makes sense for t ≥ 0 being
any number (not just an integer). This distribution is often presented as the
integral of a density ce−cs for s ≥ 0. This follows from the identity∫ t

0
ce−csds = 1− e−ct

This too may seem like a Mathematical exercise unless we give an interesting
example.

Consider the situation where you are waiting for a message on your phone.
Suppose p is the probability that a message arrives during a one hour interval.
The probability that you waited for (at least) t hours (with hourly checks for a
message) without seeing a message is (1− p)t.

Because you are impatient for the message and you don’t want to miss the
message when it arrives, you start checking every 5 minutes. The probability
that the message arrives in a given 5 minute interval is now p/12. The probability
that you waited for t hours (where t is a fracion of the form a/12) is (1−p/12)12t

(since you checked 12t times!). We can now imagine that you checked every
minute or even more frequently. Finally, you are just staring at your phone
until you see the message! The probability that you waited t hours (where t is
now a real number) is e−pt. In other words, if T denotes the random variable
denotingthe amount of time you need to wait for a message to appear, then
P (T > t) = e−pt; here p is the frequency with which messages arrive (per hour).
Note that P (T ≤ t) = 1−e−pt which is similar to our limit above with c replaced
by p.

By using the density as given above, it is easy to use a little calculus to calculate
the expectation and variance for this waiting time distribution.

E(T ) =
∫ ∞

0
s(ce−cs)ds =

∫ ∞
0

ue−u(du/c) = 1/c
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If we interpret c as a frequency as in the previous paragraph, then this makes
sense as 1/c is the expected amount of time to wait for a singe message. Similarly,
we can calculate

E(T 2) =
∫ ∞

0
s2(ce−cs) =

∫ ∞
0

u2e−u(du/c2) = −u2e−u|∞0 +
∫ ∞

0
(2u)e−u(du/c2) = 2/c2

It follows that σ2(T ) = 1/c2.
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