Mean, Median, Mode etc

1. In a population of people in a city, the distribution of heights of individuals (crudely measured using a scaled with least count 2 cm) is given as per the following table:

$$
\begin{array}{l|ccccccccccc}
\text { Height (in cm) } & 160 & 162 & 164 & 166 & 168 & 170 & 172 & 174 & 176 & 178 & 180 \\
\hline \text { People (in 1000's) } & 5 & 10 & 25 & 50 & 100 & 120 & 140 & 100 & 50 & 10 & 5
\end{array}
$$

X denotes the random variable "the height of a randomly chosen person from the city where each person is equally likely to be chosen". Calculate the following:

1. The mathematical expectation $E(X)$ (also called $\mu(X)$).
2. The most likely height.
3. The smallest number h so that at least 50% of the population has neight less than h.
4. The variance $\sigma^{2}(X)$ and the standard deviation $\sigma(X)$.

Use a calculator if necessary. Also, try to understand the way in which X is defined.
2. A multiple choice paper has 10 questions. Each question has 4 choices. The correct answer gets 3 marks and a wrong answer gets -1 mark. A student throws a 4 -sided unbiased die to answer each question (the different throws are independent). Let X be the random variable that denotes the score of the student in the examination.

1. Calculate the expected score $E(X)$.
2. Calculate the value of X for which the probability is the highest.
3. What is the smallest s so that $P(X \leq s) \geq 1 / 2$?
4. Calculate the variance $\sigma^{2}(X)$.

Use a calculator if necessary.
3. A die is rolled repeated until we get a 6 . The number of rolls is recorded. Let X denote the random variable that denotes the number of rolls.

1. Calculate the expectation $E(X)$.
2. Calculate the value of X for which the probability is the highest.
3. What is the smallest s so that $P(X \leq s) \geq 1 / 2$?
4. Calculate the variance $\sigma^{2}(X)$.
5. Let X denote the random variable the denotes the sum of the numbers obtained on rolling two dice.
6. Calculate the expectation $E(X)$.
7. Calculate the value of X for which the probability is the highest.
8. What is the smallest s so that $P(X \leq s) \geq 1 / 2$?
9. Calculate the variance $\sigma^{2}(X)$.
10. - Player A plays a game where he wins 2 rupees with each Head and loses 1 rupee with each Tail; X is the random variable measuring the money won by A in a single game.

- Player B plays a game where he wins one rupee with each Head and loses one rupee with each tail but the coin has $2 / 3$ chance of getting head; Y is the random variable measuring the money won by B in a single game.
Calculate and compare the mathematical expectation, median, mode, variance of the variables X and Y.

