
Generalisations

Mathematician’s like to generalise — this itself is a generalisation made by a
mathematician!

In the earlier lecture we studied the probability of the event of r Heads arising
out of k of flips of an unbiased idealised coin.

P (Cr,k) =
(

k

r

)
/2k

What happens for a biased coin (for which distinct flips are still independent)?
Let us say that the probability of a Head is now p (instead of 0.5). In that case
the probability of a Tail is 1− p.

Arguing exactly as before one can show that the probability of an event like
H1H2T3H4T5 is p3(1− p)2 and so on. It follows that if we look for (the event) of
a given sequence of Heads and Tails, the probability of this event only depends
on the number of Heads and Tails; it is pr(1− p)k − r when there are r Heads
and k − r Tails in k flips.

Continuing the argument as before, the number of sequences that have r Heads
and k − r Tails is given by

(
k
r

)
. Since each of sequence is a disjoint event from

every other sequence, we see that the probability of r Heads and k − r Tails for
a biased coin becomes:

P (Cr,k) =
(

k

r

)
pr(1− p)k−r

Dice

We can generalise this even further to multi-sided coins (also called dice).

• An s-sided die is associated with s distinct events E1, . . . , Es. with
P (Ei) = pi where p1 + · · ·+ ps = 1.

• Multiple spins/flips of the die are independent of each other.

If we denote the event Ei for the k-th spin as Ei,k, then we have P (Ei,k) = pi

and Ei,k is independent of Ej1,f1 ∩ · · · ∩Ejl,fl
as long as k is not one of the ft’s.

(This notation is more complicated than the concept!).

Arguing as before we can see that the probability of a given sequence (i1, i2, . . . , ik)
as a result of k flips is given by

P (Ei1,1 ∩ Ei2,2 ∩ · · · ∩ Eik,k) = pi1pi2 · · · pik
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Let us now group these events according to “type”. So suppose that a1 of these
events are of the type E1,f (for some f), a2 of them are of the type E2,f , and so
on. We see that the probability of the event can be re-written as pa1

1 pa2
2 · · · pas

s .

How many ways are there of making k choices of which a1 are of type 1, a2 are
of type 2 and so on upto as of type s? The answer is given by the multinomial(

k
a1,a2,...,as

)
. (Note that a1 + · · ·+ as = k. By an argument similar to the one

given earlier, we can provide the formula:(
k

a1, . . . , as

)
= k!

a1! · · · as!

As before, we note that it is not obvious that the right-hand side is an integer!

Using this, we see that counting the number of occurences of various sides of the
die gives us the probability of the event C(a1,...,as),k where a die is rolled k types
and shows the risft face a1 times, the second face a2 times and so on.

P (C(a1,...,as),k) =
(

k

a1, . . . , as

)
pa1

1 . . . pas
s

This is called the multinomial distribution.

Simulation and Limits

Mathematicians also try to unify things. So we can ask the question: Do we
really need to have different dice? Can’t we get sufficiently different probabilistic
(stochastic) systems from coins?

We already saw that 3 coin flips result in 8 possible distinct/disjoint events which
are equally likely. How can we reduce this to 6? The simple answer is to “throw
away” two events!

Our new experiment is as follows.

1. We flip three coins.
2. If all three coins are different, we record the occurrence of events as follows:

1st event for the sequence (T, H, H), 2nd event for (H, T, H), 3rd event for
(H, H, T ), 4th event for (H, T, T ), 5th event for (T, H, T ) and 6th event
for (T, T, H).

3. All three coins are the same, then we go back to step 1 and continue!

Intuitively, it is clear (!) that each of the events is equally likely. It follows that
we have “constructed” a die out of coins. To provide a formal mathematical
justification (in greater generality!) will take some more effort which we will see
at a later date.

2


	Generalisations
	Dice
	Simulation and Limits


