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We have seen that if we have a large number of data points of the form
(xi, yi) where we expect yi = sin(xi) + εi), where εi are some small random
errors, then polynomial interpolation does not do a very good job of approx-
imating the sine function. This is because, we are trying to do an exact fit
instead of a “best” fit. As a slightly different example, consider what would
have happened if Kepler were trying to find an exact fit to all the positions
of a given planet; he would certainly not have got a curve of degree 2!

Thus, there are situations, where we have a “model” that we expect the
data to conform to. There are parameters in the model and we would like
to find those values of these parameters that give the “closest” fit to the
data. We have used the words “best”, “model” and “closest” without any
explanation, so we not try to explain these.

Let P denote the space of parameters. We have a map φ : P → M
where the latter is the space of models. Now, M can be identified with a
subspace of the space of functions from x-values to the space of y-values,
where each of these can be vector values as well. On this space of functions
we put a metric which we use to measure which solution is the closest and
call it the best fit.

Less abstractly, suppose that we expect the function to look like f(x) =∑m
i=j ajφj(x); here aj are the parameters. This is an example of a linear

model; even when the functions φj(x) are non-linear! Moreover, a natural
metric on the space of functions is the distance of the actual values (f(xj))

n
i=1

from the “experimental” values (yi), given by the formula(
n∑

i=1

(yi − f(xi))
2

) 1
2

This is the RMS or root-mean-square or l2 norm.
This can be turned into a problem in linear algebra as follows. Consider

the vectors wj = (φj(xi))
n
i=1 for j = 1, . . . ,m; these are m vectors in Rn.
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On the other hand we have the vector y = (yi)
n
i=1 in the same space. The

problem is thus to find the vector u in the linear span of the wj so that y is
closest to u in the usual sense of distance in Rn. It follows that this happens
when (y − u) · wj = 0 for all j.

Let us assume that ej is a collection of orthogonal vectors that have
the same linear span as wj . It follows that w =

∑m
j=1 bjwj . We can then

determine bj using the equation y · ej = w · ej = bjej · ej .
A Gram-Schmidt type process called the conjugate-gradient method can

be used to determine such a collection of orthogonal vectors iteratively as
follows.

Let e1 be a vector among the wj that has non-zero length (in order
to reduce numerical errors, we usually take the longest vector). We then
calculate

u1 = y − y · e1
e1 · e1

e1

We note that y1 · e1 = 0.
Induuctively, let us assume that we have found e1, . . . ek so and uk so

that uk is a linear combination of y with e1,. . . , ek which is orthogonal to
these latter vectors. Moreover, ei is a linear combination of w1,. . .wi. For
each j > k, we now take vectors of the form

tj = wj −
k∑

l=1

wj · el
el · el

el

and let ek+1 be a non-zero vector from among them (or the longest one for
numerical stability). We can then define

uk+1 = uk −
uk · ek+1

ek+1 · ek+1
ek+1

This completes the inductive step.
We note that the calculation only involves the values yi and the matrix

A = (φj(xi)). Thus, it is possible to represent the entire calculation rather
easily on a computer. Moreover, the parameters aj can be inductively com-
puted as well by always representating of ej in terms of the matrix that
converts the wj to this basis. The task of doing this is left as an exercise.

1 Non-linear case

In case of a nonlinear model of the form φ(a1, . . . , am;x), we use a method
that is geometrically somewhat similar to the method above!
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We first note that we have a map Rm → Rn given by

Φ : (a1, . . . , am) 7→ (φ(a1, . . . , am, xi))
n
i=1

Loosely speaking, we can think of the imageM as the “space of models”. It
is actually the evaluation of these models at the chosen x-values. However,
we can imagine that we have chosen enough x-values to determine the model
uniquely. Our problem is then to determine a point onM that is closest (in
the usual metric on Rn) to the point y.

Let us say that vp = (b1, . . . , bm) is a guess for the values of the pa-
rameters for the model that fits the data. Consider the matrix of partial
derivatives

Ap =

(
∂φ

∂aj
(xi)|al=bl;∀l

)
The tangent space to the above spaceM at Φ(vp) is the collection of points
in Rn of the form Aw+ Φ(vp) as w varies over Rm. Suppose we find a point
u on this tangent space which is closest to y; moreover, let us assume that
u is the image of w under the above transformation. Our next guess is then
vp+1 = vp+w; note that this would be the exact solution to the problem if Φ
depends linearly on the parameters. (This method is more or less that same
as Newton’s method for finding the root of a non-linear equation except for
an increase in the number of variables!) The problem of finding w (and u)
is what was solved above in the linear parametric case.

Just as in the case of Newton’s method, the convergence of the vp’s
depends on a “good” initial guess for the parameters and nice behaviour of
the function Φ.
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