Assignment 7

1. Inplement the following algorithms to numerically solve a differential equation $d\left(x_{1}, x_{2}\right) / d t=\left(x_{2},-x_{1}\right)$ starting with $x_{1}(0)=0.5$ and $x_{2}(0)=0$ for t lying in the range $(0,4)$ after division of this interval into n equal parts.
a. Euler's Method
b. Heun's Method (RKH of order 2)
c. Runge-Kutta of order 4
2. Plot the x_{1} obtained in each solution against the "analytic" solution using sine and cosine.
3. Write a program to check whether a given set of parameters satisfies the algebraic equations for a Runge-Kutta-Heun method of order 4.
4. Find at least two alternative solutions to these equations.
5. Write a program to use a Runge-Kutta-Heun method of order 4 to solve a vector differential equation with a given step size.
6. (Starred) Modify your program to use an adaptive method to determine the correct step size.
