
Deriving Runge-Kutta-Heun parameters

We are trying to solve an initial value problem of the form with with given

initial value at . Here we assume that is a differentiable function of two
variables.

var('t,y')
x = function('x',t)
f = function('f',t,y)

The Runge-Kutta-Heun method gives an approximate numerical solution to this equation. It
works when is a function that is differentiable upto sufficiently many orders. In this case, we
will work with the order 4 method. To do this we need to work with the Taylor series of upto
terms of order 3.

g = taylor(f,(t,0),(y,x(t=0)),3)
var('P,Q,R,S,T,U,V,W,X,Y')
vals = [f(t=0,y=x(t=0)) == P
 ,diff(f,t)(t=0,y=x(t=0)) == Q
 ,diff(f,y)(t=0,y=x(t=0)) == R
 ,diff(f,t,t)(t=0,y=x(t=0)) == S
 ,diff(f,t,y)(t=0,y=x(t=0)) == T
 ,diff(f,y,y)(t=0,y=x(t=0)) == U
 ,diff(f,t,t,t)(t=0,y=x(t=0)) == V
 ,diff(f,t,t,y)(t=0,y=x(t=0)) == W
 ,diff(f,t,y,y)(t=0,y=x(t=0)) == X
 ,diff(f,y,y,y)(t=0,y=x(t=0)) == Y
]

We will use as the time interval for which we will do the numerical approximation. We will
ignore all terms of order , where is at least 4. Since we will only be taking cubic powers
of various terms, the highest power of we might encounter is 13.

var('h')
hrel = [(h^p == 0) for p in range(4,13)]

The RK4 method depends on now taking the linear combination of with the values of

at 4 points. The first is the starting point

= f(t, x)dx
dt

x(0) t = 0 f

f
f

h
hn n

h

x(0) f
= f(0, x(0))k1

Deriving Runge-Kutta-Heun parameters -- Sage 1

1 of 5 10/20/2015 07:35 AM

k1 = g.substitute({t:0,y:x(t=0)})

The second point is obtained by predicting the position at (for some to be
determined later). We thus use the value

var('A,a1')
k2 = expand(g.substitute({t:A*h,y:x(t=0)+a1*h*k1}))
k2 = k2.substitute(hrel)

The third point is obtained similarly at using the value

var('B,b1,b2')
k3 = expand(g.substitute({t:B*h,y:x(t=0)+b1*h*k1+b2*h*k2}))
k3 = k3.substitute(hrel)

The fourth and final point is obtained similarly at using the value

var('C,c1,c2,c3')
k4 =
expand(g.substitute({t:C*h,y:x(t=0)+c1*h*k1+c2*h*k2+c3*h*k3}))
k4 = k4.substitute(hrel)

We now compute the predicted translation from of the points. We then break this up
into terms depending on the powers of to various orders.

var('a,b,c,d')
rhs = a*k1+b*k2+c*k3+d*k4
rhs = rhs.substitute(vals)
rhsl = []
for i in range(4):
 rhsl.append(rhs.coefficient(h,i))

This computes the "right-hand-side" of the required expression. On the other hand we would

t = Ah A

= f(Ah, x(0) + h)k2 a1 k1

t = Bh

= f(Bh, x(0) + h + h)k3 b1 k1 b2 k2

t = Ch

= f(Ch, x(0) + h + h + h)k4 c1 k1 c2 k2 c3 k3

x(0)
h

Deriving Runge-Kutta-Heun parameters -- Sage 2

2 of 5 10/20/2015 07:35 AM

like this to match the Taylor series of upto terms of order 4.

f1 = f(t=t,y=x)
eqn = diff(x,t) == f1

We use the differential equation to compute the -th Taylor coefficients in terms of values
of and its derivatives at .

x1 = f1
x2 = diff(x1,t).substitute(eqn)
x3 = diff(x2,t).substitute(eqn)
x4 = diff(x3,t).substitute(eqn)

We now compute the Taylor coefficients in expanded form.

lhsl = [x1, x2/2, x3/6, x4/24]
lhsl = map(lambda e: (e(t=0)).substitute(vals), lhsl)
lhsl = map(expand, lhsl)

We now need to extract the coefficients of various monomials in , , , dots, as defined
above. First some supplementary functions that find out which monomials occur in which
terms.

def non_numeric(op):
 return not(op.is_numeric())

def extract_monom(term):
 return prod(filter(non_numeric,term.operands()))

def monomial_list(expr):
 l = expr.operands()
 if sum(l)==expr:
 return map(extract_monom,l)
 else:
 return [expr]

We can now produce the list of monomials which occur.

monoms = map(monomial_list,lhsl)

x(h)

i xi

f (0, x(0))

P Q R

Deriving Runge-Kutta-Heun parameters -- Sage 3

3 of 5 10/20/2015 07:35 AM

These are the terms that need to vanish

fleqns = [t[0]-t[1] for t in zip(rhsl,lhsl)]

We extract equations in the RKH parameters by extracting the coefficients of each of the
monomials that occur. We also do a check to see that we have not missed anything.

check = [[(m,fleqns[i].coefficient(m,1)) for m in monoms[i]] for
i in range(4)]
recheck = [sum(expand(t[0]*t[1]) for t in l) for l in check]
rerecheck = [expand(t[0]-t[1]) for t in zip(fleqns,recheck)]
rerecheck

[0, 0, 0, 0]

If all is well, this last list should be made of 0's (at least after an additional expand).

Finally, we have the list of expressions in the RKH parameters that must vanish in order the
we have good approximation to order 4.

rkheqns = [[t[1] for t in l] for l in check]
for l in rkheqns:
 for t in l:
 view(t == 0)

a + b + c + d − 1 = 0
b + (+)c + (+ +)d − = 0a1 b1 b2 c1 c2 c3

1
2

Ab + Bc + Cd − = 01
2

c + (+ +)d − = 0a1b2 a1c2 b1c3 b2c3
1
6

b + (+ 2 +)c + (+ 2 + + 2 + 2 +1
2 a2

1
1
2 b2

1 b1b2 b2
2

1
2 c2

1 c1c2 c2
2 c1c3 c2c3

A c + (A + B)d − = 0b2 c2 c3
1
6

A b + (B + B)c + (C + C + C)d − = 0a1 b1 b2 c1 c2 c3
1
3

b + c + d − = 01
2 A2 1

2 B2 1
2 C 2 1

6
d − = 0a1b2c3

1
24

(+ 2 + 2)c + (+ 2 + 2 + + 21
2 a2

1b2 a1b1b2 a1b2
2

1
2 a2

1c2 a1c1c2 a1c2
2 b2

1c3

b + (+ 3 + 3 +)c + (+ 3 + 3 + +1
6 a3

1
1
6 b3

1 b2
1b2 b1b2

2 b3
2

1
6 c3

1 c2
1c2 c1c2

2 c3
2

A d − = 0b2c3
1

24
(A + B)c + (A + C + B + C + B + Ca1b2 a1b2 a1c2 a1c2 b1c3 b1c3 b2c3 b2c

Deriving Runge-Kutta-Heun parameters -- Sage 4

4 of 5 10/20/2015 07:35 AM

One of the "standard" solutions to this system of equations is given by taking the values of
at points as follows

These are combined in the form

In other words, we are using the following dictionary for the parameters:

sold={A:1/2, a1: 1/2, B:1/2, b1:0, b2: 1/2, C:1, c1:0, c2: 0,
c3:1, a: 1/6, b:2/6, c:2/6, d: 1/6}

We can check that these satisfy the equations:

[[t.substitute(sold) for t in l] for l in rkheqns]

[[0], [0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

If all is well we should get only 0's!

(A + A)c + (A + A + B + A + B + B)d −b1b2 b2
2 c1c2 c2

2 c1c3 c2c3 c2c3 c2
3

A b + (B + 2 B + B)c + (C + 2 C + C + 2 C1
2 a2

1
1
2 b2

1 b1b2 b2
2

1
2 c2

1 c1c2 c2
2 c

c + (+)d − = 01
2 A2b2

1
2 A2c2 B2c3

1
24

AB c + (AC + BC)d − = 0b2 c2 c3
1
8

b + (+)c + (+ +)d − = 01
2 A2a1

1
2 B2b1 B2b2

1
2 C 2c1 C 2c2 C 2c3

1
8

b + c + d − = 01
6 A3 1

6 B3 1
6 C 3 1

24

f

= f(h, x(0) + h); = f(h, x(0) + h); = f(h, x(0) + h)k2
1
2

1
2

k1 k3
1
2

1
2

k2 k4 k3

x = x(0) + (+ 2 + 2 +)
1
6

k1 k2 k3 k4

Deriving Runge-Kutta-Heun parameters -- Sage 5

5 of 5 10/20/2015 07:35 AM

