Deriving Runge-Kutta-Heun parameters

We are trying to solve an initial value problem of the form $\frac{d x}{d t}=f(t, x)$ with with given initial value $x(0)$ at $t=0$. Here we assume that f is a differentiable function of two variables.

```
var('t,y')
x = function('x',t)
f = function('f',t,y)
```

The Runge-Kutta-Heun method gives an approximate numerical solution to this equation. It works when f is a function that is differentiable upto sufficiently many orders. In this case, we will work with the order 4 method. To do this we need to work with the Taylor series of f upto terms of order 3.

```
g = taylor(f,(t,0),(y,x(t=0)),3)
var('P,Q,R,S,T,U,V,W,X,Y')
vals = [ f(t=0,y=x(t=0)) == P
    ,diff(f,t)(t=0,y=x(t=0)) == Q
    ,diff(f,y)(t=0,y=x(t=0)) == R
    ,diff(f,t,t)(t=0,y=x(t=0)) == S
    ,diff(f,t,y)(t=0,y=x(t=0)) == T
    ,diff(f,y,y)(t=0,y=x(t=0)) == U
    ,diff(f,t,t,t)(t=0,y=x(t=0)) == V
    ,diff(f,t,t,y)(t=0,y=x(t=0)) == W
    ,diff(f,t,y,y)(t=0,y=x(t=0)) == X
    ,diff(f,y,y,y)(t=0,y=x(t=0)) == Y
    ]
```

We will use h as the time interval for which we will do the numerical approximation. We will ignore all terms of order h^{n}, where n is at least 4 . Since we will only be taking cubic powers of various terms, the highest power of h we might encounter is 13 .

```
var('h')
hrel = [(h^p == 0) for p in range(4,13)]
```

The RK4 method depends on now taking the linear combination of $x(0)$ with the values of f at 4 points. The first is the starting point $k_{1}=f(0, x(0))$

```
k1 = g.substitute({t:0,y:x(t=0)})
```

The second point is obtained by predicting the position at $t=A h$ (for some A to be determined later). We thus use the value

$$
k_{2}=f\left(A h, x(0)+a_{1} h k_{1}\right)
$$

```
var('A,a1')
k2 = expand(g.substitute({t:A*h,y:x(t=0)+al*h*k1}))
k2 = k2.substitute(hrel)
```

The third point is obtained similarly at $t=B h$ using the value

$$
k_{3}=f\left(B h, x(0)+b_{1} h k_{1}+b_{2} h k_{2}\right)
$$

```
var('B,b1,b2')
k3 = expand(g.substitute({t:B*h,y:x(t=0)+b1*h*k1+b2*h*k2}))
k3 = k3.substitute(hrel)
```

The fourth and final point is obtained similarly at $t=C h$ using the value

$$
k_{4}=f\left(C h, x(0)+c_{1} h k_{1}+c_{2} h k_{2}+c_{3} h k_{3}\right)
$$

```
var('C,c1,c2,c3')
k4 =
expand(g.substitute({t:C*h,y:x(t=0)+c1*h*k1+c2*h*k2+c3*h*k3}))
k4 = k4.substitute(hrel)
```

We now compute the predicted translation from $x(0)$ of the points. We then break this up into terms depending on the powers of h to various orders.

```
var('a,b,c,d')
rhs = a*k1+b*k2+c*k3+d*k4
rhs = rhs.substitute(vals)
rhsl = []
for i in range(4):
    rhsl.append(rhs.coefficient(h,i))
```

This computes the "right-hand-side" of the required expression. On the other hand we would
like this to match the Taylor series of $x(h)$ upto terms of order 4.

```
f1 = f(t=t,y=x)
eqn = diff(x,t) == f1
```

We use the differential equation to compute the i-th Taylor coefficients x_{i} in terms of values of f and its derivatives at $(0, x(0))$.

```
x1 = f1
x2 = diff(x1,t).substitute(eqn)
x3 = diff(x2,t).substitute(eqn)
x4 = diff(x3,t).substitute(eqn)
```

We now compute the Taylor coefficients in expanded form.

```
lhsl = [x1, x2/2, x3/6, x4/24]
lhsl = map(lambda e: (e(t=0)).substitute(vals), lhsl)
lhsl = map(expand, lhsl)
```

We now need to extract the coefficients of various monomials in P, Q, R, dots, as defined above. First some supplementary functions that find out which monomials occur in which terms.

```
def non_numeric(op):
    return not(op.is_numeric())
```

```
def extract_monom(term):
    return prod(filter(non_numeric,term.operands()))
```

```
def monomial_list(expr):
    l = expr.operands()
    if sum(l)==expr:
        return map(extract_monom,l)
    else:
        return [expr]
```

We can now produce the list of monomials which occur.

```
monoms = map(monomial_list,lhsl)
```

These are the terms that need to vanish

```
fleqns = [t[0]-t[1] for t in zip(rhsl,lhsl)]
```

We extract equations in the RKH parameters by extracting the coefficients of each of the monomials that occur. We also do a check to see that we have not missed anything.

```
check = [[(m,fleqns[i].coefficient(m,1)) for m in monoms[i]] for
i in range(4)]
recheck = [sum(expand(t[0]*t[1]) for t in l) for l in check]
rerecheck = [expand(t[0]-t[1]) for t in zip(fleqns,recheck)]
rerecheck
```

 [0, 0, 0, 0]
 If all is well, this last list should be made of 0 's (at least after an additional expand).
Finally, we have the list of expressions in the RKH parameters that must vanish in order the we have good approximation to order 4.

```
rkheqns \(=\) [[t[1] for \(t\) in l] for \(l\) in check]
for \(l\) in rkheqns:
    for \(t\) in l:
            view(t == 0)
    \(a+b+c+d-1=0\)
    \(a_{1} b+\left(b_{1}+b_{2}\right) c+\left(c_{1}+c_{2}+c_{3}\right) d-\frac{1}{2}=0\)
    \(A b+B c+C d-\frac{1}{2}=0\)
    \(a_{1} b_{2} c+\left(a_{1} c_{2}+b_{1} c_{3}+b_{2} c_{3}\right) d-\frac{1}{6}=0\)
    \(\frac{1}{2} a_{1}^{2} b+\frac{1}{2}\left(b_{1}^{2}+2 b_{1} b_{2}+b_{2}^{2}\right) c+\frac{1}{2}\left(c_{1}^{2}+2 c_{1} c_{2}+c_{2}^{2}+2 c_{1} c_{3}+2 c_{2} c_{3}+\right.\)
    \(A b_{2} c+\left(A c_{2}+B c_{3}\right) d-\frac{1}{6}=0\)
    \(A a_{1} b+\left(B b_{1}+B b_{2}\right) c+\left(C c_{1}+C c_{2}+C c_{3}\right) d-\frac{1}{3}=0\)
    \(\frac{1}{2} A^{2} b+\frac{1}{2} B^{2} c+\frac{1}{2} C^{2} d-\frac{1}{6}=0\)
    \(a_{1} b_{2} c_{3} d-\frac{1}{24}=0\)
    \(\frac{1}{2}\left(a_{1}^{2} b_{2}+2 a_{1} b_{1} b_{2}+2 a_{1} b_{2}^{2}\right) c+\frac{1}{2}\left(a_{1}^{2} c_{2}+2 a_{1} c_{1} c_{2}+2 a_{1} c_{2}^{2}+b_{1}^{2} c_{3}+2\right.\)
    \(\frac{1}{6} a_{1}^{3} b+\frac{1}{6}\left(b_{1}^{3}+3 b_{1}^{2} b_{2}+3 b_{1} b_{2}^{2}+b_{2}^{3}\right) c+\frac{1}{6}\left(c_{1}^{3}+3 c_{1}^{2} c_{2}+3 c_{1} c_{2}^{2}+c_{2}^{3}+\right.\)
    \(A b_{2} c_{3} d-\frac{1}{24}=0\)
    \(\left(A a_{1} b_{2}+B a_{1} b_{2}\right) c+\left(A a_{1} c_{2}+C a_{1} c_{2}+B b_{1} c_{3}+C b_{1} c_{3}+B b_{2} c_{3}+C b_{2}\right.\)
```

$$
\begin{aligned}
& \left(A b_{1} b_{2}+A b_{2}^{2}\right) c+\left(A c_{1} c_{2}+A c_{2}^{2}+B c_{1} c_{3}+A c_{2} c_{3}+B c_{2} c_{3}+B c_{3}^{2}\right) d- \\
& \frac{1}{2} A a_{1}^{2} b+\frac{1}{2}\left(B b_{1}^{2}+2 B b_{1} b_{2}+B b_{2}^{2}\right) c+\frac{1}{2}\left(C c_{1}^{2}+2 C c_{1} c_{2}+C c_{2}^{2}+2 C c\right. \\
& \frac{1}{2} A^{2} b_{2} c+\frac{1}{2}\left(A^{2} c_{2}+B^{2} c_{3}\right) d-\frac{1}{24}=0 \\
& A B b_{2} c+\left(A C c_{2}+B C c_{3}\right) d-\frac{1}{8}=0 \\
& \frac{1}{2} A^{2} a_{1} b+\frac{1}{2}\left(B^{2} b_{1}+B^{2} b_{2}\right) c+\frac{1}{2}\left(C^{2} c_{1}+C^{2} c_{2}+C^{2} c_{3}\right) d-\frac{1}{8}=0 \\
& \frac{1}{6} A^{3} b+\frac{1}{6} B^{3} c+\frac{1}{6} C^{3} d-\frac{1}{24}=0
\end{aligned}
$$

One of the "standard" solutions to this system of equations is given by taking the values of f at points as follows

$$
k_{2}=f\left(\frac{1}{2} h, x(0)+\frac{1}{2} h k_{1}\right) ; k_{3}=f\left(\frac{1}{2} h, x(0)+\frac{1}{2} h k_{2}\right) ; k_{4}=f\left(h, x(0)+h k_{3}\right)
$$

These are combined in the form

$$
x=x(0)+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

In other words, we are using the following dictionary for the parameters:

```
sold={A:1/2, al: 1/2, B:1/2, b1:0, b2: 1/2, C:1, c1:0, c2: 0,
c3:1, a: 1/6, b:2/6, c:2/6, d: 1/6}
```

We can check that these satisfy the equations:

$$
\begin{gathered}
{[[t . s u b s t i t u t e(s o l d) \text { for } t \text { in } l] \text { for } l \text { in rkheqns] }} \\
{[[0],[0,0],[0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0]}
\end{gathered}
$$

If all is well we should get only 0's!

