
Deriving Runge-Kutta-Heun parameters

We are trying to solve an initial value problem of the form  with with given

initial value  at . Here we assume that  is a differentiable function of two
variables.

var('t,y')
x = function('x',t)
f = function('f',t,y) 

The Runge-Kutta-Heun method gives an approximate numerical solution to this equation. It
works when  is a function that is differentiable upto sufficiently many orders. In this case, we
will work with the order 4 method. To do this we need to work with the Taylor series of  upto
terms of order 3.

g = taylor(f,(t,0),(y,x(t=0)),3)
var('P,Q,R,S,T,U,V,W,X,Y')
vals = [ f(t=0,y=x(t=0)) == P
       ,diff(f,t)(t=0,y=x(t=0)) == Q
       ,diff(f,y)(t=0,y=x(t=0)) == R
       ,diff(f,t,t)(t=0,y=x(t=0)) == S
       ,diff(f,t,y)(t=0,y=x(t=0)) == T
       ,diff(f,y,y)(t=0,y=x(t=0)) == U
       ,diff(f,t,t,t)(t=0,y=x(t=0)) == V
       ,diff(f,t,t,y)(t=0,y=x(t=0)) == W
       ,diff(f,t,y,y)(t=0,y=x(t=0)) == X
       ,diff(f,y,y,y)(t=0,y=x(t=0)) == Y
       ] 

We will use  as the time interval for which we will do the numerical approximation. We will
ignore all terms of order , where  is at least 4. Since we will only be taking cubic powers
of various terms, the highest power of  we might encounter is 13.

var('h')
hrel = [(h^p == 0) for p in range(4,13)] 

The RK4 method depends on now taking the linear combination of  with the values of 

at 4 points. The first is the starting point 

= f(t, x)dx
dt
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k1 = g.substitute({t:0,y:x(t=0)}) 

The second point is obtained by predicting the position at  (for some  to be
determined later). We thus use the value

var('A,a1')
k2 = expand(g.substitute({t:A*h,y:x(t=0)+a1*h*k1}))
k2 = k2.substitute(hrel) 

The third point is obtained similarly at  using the value

var('B,b1,b2')
k3 = expand(g.substitute({t:B*h,y:x(t=0)+b1*h*k1+b2*h*k2}))
k3 = k3.substitute(hrel) 

The fourth and final point is obtained similarly at  using the value

var('C,c1,c2,c3')
k4 = 
expand(g.substitute({t:C*h,y:x(t=0)+c1*h*k1+c2*h*k2+c3*h*k3}))
k4 = k4.substitute(hrel) 

We now compute the predicted translation from  of the points. We then break this up
into terms depending on the powers of  to various orders.

var('a,b,c,d')
rhs = a*k1+b*k2+c*k3+d*k4
rhs = rhs.substitute(vals)
rhsl = []
for i in range(4):
    rhsl.append(rhs.coefficient(h,i)) 

This computes the "right-hand-side" of the required expression. On the other hand we would

t = Ah A

= f(Ah, x(0) + h )k2 a1 k1

t = Bh

= f(Bh, x(0) + h + h )k3 b1 k1 b2 k2

t = Ch

= f(Ch, x(0) + h + h + h )k4 c1 k1 c2 k2 c3 k3
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like this to match the Taylor series of  upto terms of order 4.

f1 = f(t=t,y=x)
eqn = diff(x,t) == f1 

We use the differential equation to compute the -th Taylor coefficients  in terms of values
of  and its derivatives at .

x1 = f1
x2 = diff(x1,t).substitute(eqn)
x3 = diff(x2,t).substitute(eqn)
x4 = diff(x3,t).substitute(eqn) 

We now compute the Taylor coefficients in expanded form.

lhsl = [x1, x2/2, x3/6, x4/24]
lhsl = map(lambda e: (e(t=0)).substitute(vals), lhsl)
lhsl = map(expand, lhsl) 

We now need to extract the coefficients of various monomials in , , , dots, as defined
above. First some supplementary functions that find out which monomials occur in which
terms.

def non_numeric(op):
    return not(op.is_numeric()) 

def extract_monom(term):
    return prod(filter(non_numeric,term.operands())) 

def monomial_list(expr):
    l = expr.operands()
    if sum(l)==expr:
        return map(extract_monom,l)
    else:
        return [expr] 

We can now produce the list of monomials which occur.

monoms = map(monomial_list,lhsl) 

x(h)

i xi

f (0, x(0))

P Q R
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These are the terms that need to vanish

fleqns = [t[0]-t[1] for t in zip(rhsl,lhsl)] 

We extract equations in the RKH parameters by extracting the coefficients of each of the
monomials that occur. We also do a check to see that we have not missed anything.

check = [[(m,fleqns[i].coefficient(m,1)) for m in monoms[i]] for 
i in range(4)]
recheck = [sum(expand(t[0]*t[1]) for t in l) for l in check]
rerecheck = [expand(t[0]-t[1]) for t in zip(fleqns,recheck)]
rerecheck 

[0, 0, 0, 0]

If all is well, this last list should be made of 0's (at least after an additional expand).

Finally, we have the list of expressions in the RKH parameters that must vanish in order the
we have good approximation to order 4.

rkheqns = [[t[1] for t in l] for l in check]
for l in rkheqns:
    for t in l:
        view(t == 0) 
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One of the "standard" solutions to this system of equations is given by taking the values of 
at points as follows

These are combined in the form

In other words, we are using the following dictionary for the parameters:

sold={A:1/2, a1: 1/2, B:1/2, b1:0, b2: 1/2, C:1, c1:0, c2: 0, 
c3:1, a: 1/6, b:2/6, c:2/6, d: 1/6} 

We can check that these satisfy the equations:

[[t.substitute(sold) for t in l] for l in rkheqns] 

[[0], [0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

If all is well we should get only 0's!
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