Numerical Integration
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As one learns from analysis, most functions are integrable. Moreover,
integration is a smoothing operation, so the integral of a function is “more
differentiable” than the original function.

We begin with rules for integrating well-behaved functions.

1 Integration using polynomial interpolation

We can approximate our given function by a polynomial interpolation. The
integral of this polynomial is easy to find.

For example, the linear interpolate of a function f between x¢ and z; =
xzo + h is given by

l(x) = (1/h) (f(xo)(z1 — x) + f(21)(x — o))

Thus, we calculate
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We can also see this as the area of the trapezoid with base of length A and
perpendicular sides of length f(z¢) and f(z1) respectively. For this reason,
this numerical integration procedure is called the Trapezoidal rule.

Going to the next level, we write the quadratic interpolate of f at the
points xg, x1 = xg + h and x5 = xy + 2h as

q(x) = (1/2h°) (f(z0)(x — w2)(x — @1) + 2 (21) (2 — o) (x2 — ) f(w2) (2 — x0) (2 — 21))
Now, we calculate term by term using the substitution z = zg + sh,
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Similarly,
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and finally
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Combining these, we obtain the formula, (note that xo — xzo = 2h)
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This is called Simpson’s rule for (numerical) integration.

We can naturally take this furher by interpolating the function by a
polynomial of degree n using its values at xg, x1 = xo+h, ..., Tp = To+nh.
We write the polynomial in terms of x = xg + sh as the formula is easier to
read,
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One can calculate the relevant mtegrals to obtain some general rules for
numerical integration. We have some rational numbers which are universal
in the sense that they do not depend on the function f.
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It follows from the above calculation that
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This gives the general rule for numerical integration using polynomial inter-
polation.

2 Error estimation

To estimate the error involved in the above integration process, we assume
that the function f is differentiable to high (at least 5) orders.



First of all, we note that Simpson’s rule is based on quadratic interpo-
lation. Hence, if f(x) = Ax? + Bx + C is a quadratic polynomial functio,
then Simpson’s rule gives an exact answer; in other words, it gives the same
answer as actually integrating the function.

Now consider Simpson’s Rule applied to the integral of x® from z( to
xo + 2h. We have x3 = (z — g — h)3 + (=) for some quadratic polynomial
in z. Since Simpson’s rule is additive (i.e. gives a linear functional on the
space of functions) we see that we need to understand Simpson’s Rule on
(x — w9 — h)3. This function has value 0 at xo + h and has values of opposite
signs at xg and zg+ 2h. It follows that Simpson’s Rule gives the same result
as integration for all cubic polynomials as well!

If f is differentiable upto order 4, then we can use the mean value theorem

to write
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for suitable constants a; and for some point (§) in the interval containing
r and the points xg, 1 and zo. If f(i’”) is continuous in this interval, then
we see that the last term is bound by a constant multiple of 2% in such an
interval. Applying Simpson’s rule to the function thus gives an number that
differs from the integral of f over (xg,x2) by at most a constant multiple of
h5. Hence, upon halving the interval, the error should get divided by 32.
This leads us to the adaptive method for applying Simpson’s rule which
is described briefly as follows. To calculate the integral of f over (a,b) upto
an error e we first take z9 = a, 1 = (a + b0)/2 and z2 = b and apply
Simpson’s Rule to obtain w. We then take the left interval (a, (a + 0)/2)
and the right interval ((a + b)/2,b) and apply Simpson’s Rule to each half
to obtain the values [ and r respectively. We check if |l + r — w| < e,
and if that works we accept the value w. Otherwise, we repeat the process
with the two intervals separately but with the error replaced by e/2 in each
case. The idea is that if f(*) is roughly constant over the interval (a,b),
then each subdivision should improve our accuracy as seen above. Hence,
after enough subdivisions, a small enough error is indicative of an accurate
answer. (However, note that this is not a proof of accuracy.)
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