Assignment 6

1. Inplement the following algorithms to calculate the integral of a function f from x_{0} to x_{1} after division of this interval into n equal parts.
a. Riemann Sum (left or right end-point)
b. Trapezoidal Rule
c. Simpson's Rule (for n even)
2. For each of the algorithms above put in a counter to count the number of function computations involved in the calculation.
3. Use the above methods to calculate the value of $\tan ^{-1}(1)$ using the integral $\int_{0}^{1} \frac{d x}{1+x^{2}}$ after division into n parts for $n=16,2^{10}$.
4. Modify your program for Simpson's Rule to adaptively increase the number of points to get a better result (Romberg's method). Print the list of intervals and divisions used and count the number of function evaluations.
5. Use the adaptive method to integrate an oscillatory function like $\exp (-x) \cos (5 x)$ over the interval $[0,1]$. Compare the result with that obtained by equal-spaced divisions.
