Assignment 5

1. Inplement the following algorithms to calculate the degree n polynomial interpolation of a function whose values y_{i} are given at distinct points x_{i} for $i=0, \ldots, n$.
a. Divided differences
b. Iterated differences (Aitken's method)
c. Lagrange interpolation
2. For each of the algorithms above put in a counter to count the number of multiplications involved in the calculation.
3. Use the list of values of $\sin \left(i / 2^{6}\right)$ for $i \in\left[0,2^{8}\right]$ and interpolate it using your algorithms. Compare the accuracy of the different algorithms by finding the maximum difference with the in-built values for sin at the points $x=i / 2^{8}$ for $i \in\left[0,2^{10}\right]$.
4. Use the power series method (as in Unit Test 1) to calculate the function $L(x)$ given by $\sum_{k=0}^{\infty} x^{k} /(k+1)^{2}$ accurately for $x=i / 2^{9}$ for $i \in\left[0,2^{8}\right]$. Use any interpolation method to calculate it for the values $x=i / 2^{11}$ for $i \in\left[0,2^{10}\right]$ and compare the values with the power series calculation.
