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There are many (topological) spaces of functions where polynomials are
dense. For example, in the space of continuous functions with the *sup*
norm; this is the Weierstrass approximation theorem.

Providing an “exact” value for a general real number means providing
an infinite sequence of rationals — something that a computer cannot do in
a finite amount of time. Providing an “exact” representation for a general
function would require providing an uncountable collection of pairs of real
numbers — which is (if anything!) “more impossible”.

However, there are some (well-behaved) functions, for each of which
we can write a program which can compute it to any prescribed level of
accuracy. Unfortunately, such programs can be time consuming.

For these reasons (and others which we shall see by and by) it is useful
to find good polynomial approximations to a function.

1 Formalism

Suppose we are given a finite collection ξ = (x0, . . . , xn) of x-values and
the values yi = f(xi) of the function at these points. The problem we now
examine is to find a polynomial P (x) = Pξ(x) of degree n that takes exactly
the same values at these points.

Writing P (x) =
∑n

k=0 akx
k, we see that the problem is that of solving

the system of n+ 1 linear equations in n+ 1 variables ai as follows:

a0 + a1xi + · · ·+ anx
n
i = yi for i = 0, . . . , n

The matrix version of this system of equations is:
1 x0 . . . xn0
1 x1 . . . xn1
...

...
. . .

...
1 xn . . . xnn



a0
a1
...
an

 =


y0
y1
...
yn


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We know this matrix as the Vandermonde matrix whose determinant is the
product of the terms (xi − xj) (for i < j); which is non-zero since the xi
are assumed to be distinct. Hence, we can solve the equation to find the
coefficients ai uniquely. However, we would like to write a formula for the
solution so that it can be calculated easily.

In the case n = 1, we can write the secant to the graph y = f(x):

y − y0 =
y1 − y0
x1 − x0

(x− x0)

We see that the linear polynomial that interpolates the two values is given
by:

P(x1,x0)(x) = (∆0
ξf)0 + (∆1

ξf)0(x− x0)
where we define (∆0

ξf)i = yi and

(∆1
ξf)i =

yi+1 − yi
xi+1 − xi

How can one generalise this? Let us examine the solution for n = 2. We
have

P (x)− P (x′) = a2(x
2 − x′2) + a1(x− x′) = (a2(x+ x′) + a1)(x− x′)

This gives

(∆1
ξP )0 = a2(x1 + x0) + a1 and (∆1

ξP )1 = a2(x2 + x1) + a1

It follows that

a2 =
(∆1

ξf)1 − (∆1
ξf)0)

x2 − x0
This hints at the inductive definition (for k ≥ 0)

(∆k+1
ξ f)i =

(∆k
ξf)i+1 − (∆k

ξf)i)

xi+k − xi
along with the expression

Pξ(x) =
n∑
k=0

(
(∆k

ξf)0

k−1∏
i=0

(x− xi)

)
Consider the linear map from functions to n+ 1-tuples which is given by

f 7→
(
(∆0

ξf)0, (∆
1
ξf)0, . . . (∆

n
ξ f)0)

)
We see that

∏k−1
i=0 (x − xi) goes to the standard basis vector ek (with 1 in

the k-th place and 0 elsewhere). This can be used to easily prove the above
formulae for the polynomial interpolation of f .
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2 Error term

We now ask ourselves how good this approximation is. To do so, we notice
that f(x) − P (x) vanishes at all the points xi. So, if f were a polynomial
of higher degree then f(x) − P (x) would be a multiple of the polynomial∏n
i=0(x− xi). The size of this multiple is what will determine the accuracy

of our approximation.
The polynomial

∏n
i=0(x− xi) vanishes precisely at the points xi. Thus,

given any x′ we can find Kx′ so that the following equality holds:

f(x′)− P (x′) = Kx′
∏
i=0

(x′ − xi)

Since Kx′ is a measure of the error in the approximation of f(x′) by P (x′),
we want to estimate it. (Obviously Kx′ = 0 if x′ = xi for some i, so we
assume that x′ 6= xi for any i).

To do so, we consider the function

Ex′(x) = f(x)− P (x)−Kx′
∏
i=0

(x− xi)

Let us assume that f is differentiable n+1 times in an interval that includes
all the xi and x′; then so is Ex′ . Moreover, Ex′ has (at least) n+ 2 zeroes in
this interval (at all the points x′ and xi for i = 0, . . . , n). By Rolle’s theorem,
the derivative of Ex′ has n+ 1 zeroes, the second derivative n zeroes and so
on. It follows that the n + 1-st derivative has at least n + 2 − (n + 1) = 1
zeroes. Let x′′ be such a zero. Since the n+ 1-st derivative of P (x) is 0 and
the n+ 1-st derivative of

∏n
i=0(x− xi) is (n+ 1)!, we have

f (n+1)(x′′)−Kx′(n+ 1)! = 0

In other words, we see that Kx′ = f(x′′)/(n+1)! for some x′′ in the smallest
interval [a, b] which contains x′ and all the xi for i = 0, . . . , n.

If we additionally assume that f is n+1-times continuously differentiable,
then f (n+1) is continuous and thus uniformly bounded in this interval [a, b]
by some constant M(a, b). It follows that the error in the approximation is
then bounded as follows

|f(x)− Pξ(x)| ≤M(a, b)

∣∣∣∣∣
n∏
i=0

(x− xi)

∣∣∣∣∣
In particular, if we choose xi to be closely spaced and x to lie in the interval
that contains the xi, then we can make the approximation good.
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3 Computation

In many algebraic situations, we are satisfied when we find a closed form
formula for something. When the terms of such a formula are difficult to
calculate accurately, it may sometimes be better to go back to first principles
to see how the formula can be derived differently in order to make a more
accurate and efficient algorithm. The calculation of P (x) is one such case.

Calculation of divided differences involves division by numbers of the
form (xi − xj) which may be quite small. It is thus convenient to organise
the calculation in a way that retains as much accuracy as possible.

As before, we assume that we are given ξ = (x0, . . . , xn). Now suppose
that g1 and g2 are functions so that

g1(xi1) = g2(xi1); . . . ; g1(xik) = g2(xik)

Let us define

h(x) =
1

xik+1
− xi0

det

(
g2(x) x− xik+1

g1(x) x− xi0

)
We calculate that h(xij ) = g1(xij ) for j = 1, . . . , k. Moreover, we see that

h(xi0) = g1(xi0) and h(xik+1
) = g2(xik+1

)

The above calculation allows us to define interpolation polynomials Pi+1,...,i+k(x)
as follows. We define Pi(x) = yi (constant function). We then inductively
define

Pi,i+1,...,i+k(x) =
1

xi+k − xi
det

(
Pi+1,...,i+k(x) x− xik
Pi,...,i+(k−1)(x) x− xi

)
By induction, we can show that Pi,...,i+k(xi+r) = yi+r for r = 0, . . . , k. In
particular, we see that P0,...,n(x) is the interpolation polynomial that we are
looking for.

Now, this is a very cumbersome way of writing the polynomial if we want
to write it algebraically. However, it is a very efficient way of calculating the
value of P (x) at a given value of x. The reason is that at each stage we are
only calculating a 2x2 determinant; this involves only two multiplications.

In order to make the calculation more accurate, we can also re-order the
calculation as follows. We note that the polynomial Pξ(x) is unique and does
not depend on the numbering of the xi. Thus it is possible to number the
points xi so that |x−xi| is a non-decreasing sequence. Such an organisation
apparently results in greater accuracy.
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