Assignment 3

1. Write a program to perform row reduction of a matrix such that:

- if the (i, i)-th entry is 0 at i-th stage, it generates an error message and stops.
- the (i, i)-th entry is used as pivot at the i-th stage.
- keep track of the operations to produce the $L U$ decomposition.
- calculate the inverse of M using this method.

Sage users should make use of the built-in matrix type to store the matrix. Others can use the array type.
2. Use the built-in random generator to generate a 10×10 matrix M whose entries are uniformly random in the interval $[0,1]$. Apply your row-reduction program to M to produce its $L U$ decomposition and therefore M^{-1}. Compare $M \cdot M^{-1}$ with identity.
3. For various values of N apply your program to the 2×2 matrix

$$
B_{N}=\left(\begin{array}{cc}
(2.0)^{-N} & 1 \\
1 & 1
\end{array}\right)
$$

For which values of N is the result "wrong". Why?
4. Modify your program to perform partial pivoting keeping track of the permutation to obtain the $\pi L U$ decomposition.
5. Apply the partial pivot method to the matrix M and the matrix B_{N} and compare the results with the previous case.

6 . For various values of N apply your programs to the 2×2 matrix

$$
C_{N}=\left(\begin{array}{cc}
2^{-N} & 1 \\
2^{-N-1} & 2^{-N-2}
\end{array}\right)
$$

For which values of N is the result "wrong". Why?
7. (Starred) For various positive integer values of a, b, c, d try to see when the top-left entry of the matrix

$$
E(a, b, c, d)=\left(\begin{array}{cc}
2^{-a} & 2^{(-b)} \\
2^{-c} & 2^{-d}
\end{array}\right)
$$

is the "correct" choice of pivot. How does this depend on the order between a, b, c and d ? Assume that machine epsilon is 2^{-N}, then how does this depend on N ? Can you use this to give a way to choose the "correct" choice of pivot?

