Assignment 1

1. Calculate $1.00000-0.99999$. Why is it different from 0.00001 ?
2. Calculate $a=\left(2^{N}-1\right) /\left(1.0 * 2^{N}\right)$ and $b=1.0-a$ (so that b should be $\left.1.0 / 2^{N}\right)$. Now calculate $b *\left(2^{N}\right)$. Do this for various values of N and look for the first N where you get something different from 1.0. Explain the answer.
3. Calculate the alternating sum of the integer part of $1000 / n$ for n in the range 1 to 1000 . This should be approximately 1000 times the value of $\log (2)$. Is it? What place of decimal is is correct for?
4. Does the value improve if we take more values for n ? Why not?
5. Repeat the above calculation with 1000 replaced by $8388608\left(=2^{23}\right)$. What happens now?
6. (a) $\pi^{2} / 6$ is roughly 1.6449 . Find the smallest N so that sum of $1 / n^{2}$ for n going from 1 to N is at least 1.644 .
(b) e is roughly 2.71828 . Find the smallest N so that the sum of $1 / n$! for n going from 1 to N is at least 2.718.
Explain the discrepancy between the values of N needed. In both cases try to also estimate the required N "by hand".
7. (Starred) Find out about Euler's summation technique which speeds up the covergence for $6(\mathrm{a})$ and $\log (2)$ as well.
