Quiz 11: Products over posets

Question

Let P be the category (poset) whose objects are positive rational numbers with a (unique) morphism $r \rightarrow s$ if $\frac{s}{r} \in \mathbb{N}$.
Given D from P to $\mathbf{A b}$ (the category of abelian goups) which sends r to the subgroup

$$
D(r)=\{q \in \mathbb{Q}: r q \in \mathbb{Z}\} \subset \mathbb{Q}
$$

Note that $\frac{r}{s} \in \mathbb{N}$ means that $D(r) \subset D(s)$ in a natural way.

1. Does the product $\prod_{P} D$ exist? If yes, what is it?
2. Does the co-product $\coprod_{P} D$ exist? If yes, what is it?

Answer

We note that there is a natural inclusion $D(r) \subset \mathbb{Q}$ for each r in P. Moreover, this is compatible with the inclusion $D(r) \subset D(s)$ associated with the morphism $r \rightarrow s$ in P. This shows that if the co-product exists, then it has a natural morphism to \mathbb{Q}. We claim that \mathbb{Q} is the co-product in $\mathbf{A b}$.
Given an abelian group A and homomorphisms $a_{r}: D(r) \rightarrow A$ that are compatible with the inclusions $D(r) \subset D(s)$ when $r \rightarrow s$. Given p / q in \mathbb{Q} such that p and q have no common factor. We see that p / q lies in $D(q)$. So we can try to define $a(p / q)=a_{r}(p / q)$ provided we check that this is compatible for the inclusion $D(r) \subset D(s)$ when $r \rightarrow s$. We are given that a_{s} restricts to a_{r} on elements of $D(r)$. Thus $a_{s}(p / q)=a_{r}(p / q)$. This shows that $a: \mathbb{Q} \rightarrow A$ is well-defined.

Thus, the co-product is \mathbb{Q}.
To calculate the product, suppose we are given an abelian group A and homomorphisms $d_{r}: A \rightarrow D(r)$ which are compatible with the inclusions $D(r) \subset D(s)$. Given any non-zero element p / q in $D(s)$, we can find an r such that p / q is not in $D(r)$. This means that p / q cannot be in the image of d_{s} and hence it cannot be in the image of d_{r} due to compatibility. This shows that $d_{r}(A)=\{0\}$.
Thus, the product is $\{0\}$.

