Quiz 10: Adjoint Functor Theorem

Question

Given a group G. Suppose G is the category of sets with G-action and morphisms are morphisms that commute with the G-action.

Given that F from \mathcal{G} to **Set** is the forgetful functor.

- 1. Does F have a left adjoint? If yes, what is it?
- 2. Does F have a right adjoint? If yes, what is it?

Answer

If F has a left adjoint L from **Set** to \mathcal{G} , this would identify

 $\operatorname{Map}(T, F(S))$ with $\mathcal{G}(L(T), S)$

where Map(A, B) denotes the set of set-maps from a set A to a set B.

Given a set T, we have a natural action of G on the set $G \times T$ via the action on the first factor. Given a set map $a: T \to F(S)$ where S is a G-set, we have a natural map $\tilde{a}: G \times T \to S$ given by $\tilde{a}(g,t) = g \cdot a(t)$; this is a map of G-sets. Conversely, given a G-set map $b: G \times T \to S$, we have

$$b((g,t)) = b(g \cdot (e,t)) = g \cdot b(e,t)$$

for every element g in G; here e represents the identity element of G. Thus, the map b is determined by $\hat{b}: T \to F(S)$ where $\hat{b}(t) = b(e, t)$. So, if we set $L(T) = G \times T$ we have the required natural identification and L is the left-adjoint functor for F.

If F has a right adjoint R from **Set** to \mathcal{G} , this would identify

$$\operatorname{Map}(F(S), T)$$
 with $\mathcal{G}(S, R(T))$

where Map(A, B) denotes the set of set-maps from a set A to a set B.

Given a set map $a : F(S) \to T$ where S is a G-set, we get a map $\tilde{a} : S \to Map(G,T)$ given by $\tilde{a}(s)(g) = a(g \cdot s)$. Moreover,

$$\tilde{a}(h \cdot s)(g) = a(g \cdot h \cdot s) = \tilde{a}(s)(g \cdot h)$$

Note that Map(G,T) has a natural G action given by $(h \cdot b)(g) = b(g \cdot h)$ as above.

Conversely, given $b: S \to \operatorname{Map}(G, T)$ a map of G-sets, we define $\hat{b}: S \to T$ by $\hat{b}(s) = b(s)(e)$ and note that $b(s)(g) = b(g \cdot s)(e)$ (since b is a map of G-sets). This provides the necessary identification which shows that $R(T) = \operatorname{Map}(G, T)$ is a right adjoint to F.