Quiz 10: Adjoint Functor Theorem

Question

Given a group G. Suppose \mathcal{G} is the category of sets with G-action and morphisms are morphisms that commute with the G-action.

Given that F from \mathcal{G} to Set is the forgetful functor.

1. Does F have a left adjoint? If yes, what is it?
2. Does F have a right adjoint? If yes, what is it?

Answer

If F has a left adjoint L from Set to \mathcal{G}, this would identify

$$
\operatorname{Map}(T, F(S)) \text { with } \mathcal{G}(L(T), S)
$$

where $\operatorname{Map}(A, B)$ denotes the set of set-maps from a set A to a set B.
Given a set T, we have a natural action of G on the set $G \times T$ via the action on the first factor. Given a set map $a: T \rightarrow F(S)$ where S is a G-set, we have a natural map $\tilde{a}: G \times T \rightarrow S$ given by $\tilde{a}(g, t)=g \cdot a(t)$; this is a map of G-sets. Conversely, given a G-set map $b: G \times T \rightarrow S$, we have

$$
b((g, t))=b(g \cdot(e, t))=g \cdot b(e, t)
$$

for every element g in G; here e represents the identity element of G. Thus, the map b is determined by $\hat{b}: T \rightarrow F(S)$ where $\hat{b}(t)=b(e, t)$. So, if we set $L(T)=G \times T$ we have the required natural identification and L is the left-adjoint functor for F.

If F has a right adjoint R from Set to \mathcal{G}, this would identify

$$
\operatorname{Map}(F(S), T) \text { with } \mathcal{G}(S, R(T))
$$

where $\operatorname{Map}(A, B)$ denotes the set of set-maps from a set A to a set B.
Given a set map $a: F(S) \rightarrow T$ where S is a G-set, we get a map $\tilde{a}: S \rightarrow$ $\operatorname{Map}(G, T)$ given by $\tilde{a}(s)(g)=a(g \cdot s)$. Moreover,

$$
\tilde{a}(h \cdot s)(g)=a(g \cdot h \cdot s)=\tilde{a}(s)(g \cdot h)
$$

Note that $\operatorname{Map}(G, T)$ has a natural G action given by $(h \cdot b)(g)=b(g \cdot h)$ as above.

Conversely, given $b: S \rightarrow \operatorname{Map}(G, T)$ a map of G-sets, we define $\hat{b}: S \rightarrow T$ by $\hat{b}(s)=b(s)(e)$ and note that $b(s)(g)=b(g \cdot s)(e)$ (since b is a map of G-sets). This provides the necessary identification which shows that $R(T)=\operatorname{Map}(G, T)$ is a right adjoint to F.

