Adjoints and Products

As already seen, there is a close connection between adjoints and products. This
becomes clearer with Freyd’s adjoint functor theorem which we now explain and
prove.

Adjoints and products for posets

Given a poset P, we can think of it as a category with a unique morphism
between two distinct objects. A functor f: P — @ between posets considered
as categories is the same as a monotone map of posets. Since morphisms betwen
objects of P are unique when they exist, a diagram in P is determined by a
suitable subset S of P which makes up the vertices of the diagram. It follows
easily that the product of this diagram exists if and only if there exists a greatest
lower bound inf(S) in P. This is an element of P defined by:

x <inf(S) in P if and only if x < p, for all p € S

Similarly, the co-product of this diagram exists if and only if there exists a least
upper bound sup(S). This is an element of P defined by:

sup(S) <z in P if and only if p <z, for all p € S

The functor f : P — @ is a left adjoint to g : @ — P whenever the following
holds.
f(z) <yin Q if and only if x < g(y) in P

With the above observations, we can now try to understand the relation between
products, co-products and adjoints for categories that are posets.

Right /Left adjoint preserves products/co-products

Now assume that f: P — @ is the left adjoint of g : Q@ — P. This also means
that g is the right adjoint of f. Given a subset S of @ such that yy = inf(S)
exists in ), we have

x < g(yo) if and only if f(x)
if and only if f(x)
if and only if z < g(y

<%
<y, foraly € S
),

forally € S

It follows that g(yo) = inf g(5). In other words, we see that if yg is the product
of S in @, then g(yo) is the product of g(S) in P.

Similarly, if 2o = sup(T) is the co-product of a subset T" in P, then we can see
that f(xg) is the co-product of f(7T') in Q.

In other words, for functors between posets, left adjoint functors preserve co-
products and right adjoint functors preserve products.

We will generalise this to other categories.



Constructing adjoints for posets

Conversely, suppose that P is a poset for which every subset has a supremum.
As seen above, this is the same as saying that in this category diagrams have co-
products. Moreover, assume that we have a functor f : P — () which preserves
these co-products. Equivalently, f is a (monotone) map of posets which satisfies

sup f(T) = f (sup(T))

for every subset T in P. In other words, the least upper bound of f(7T') exists
and is the image under f of the the least upper bound of T'.

For each y in @ consider the subset T, = {z € P : f(z) < y} in P. By
assumption on P, the least upper bound of T}, exists. We denote g(y) = sup(Ty).

Since f preserves suprema f(g(y)) = sup(f(Ty)). Now, z lies in T}, if and only
if f(z) <y. Thus, f(g(y)) = sup(f(Ty)) < y. In particular, g(y) lies in T,
and is the largest element in it. Hence, if f(z) <y, then z € T}, so z < g(y).
Conversely, if z < g(y), then f(z) < f(g(y)) < y. Thus, we see that g is the
right adjoint of f.

In summary, if P is a poset that has least upper bounds and f: P — Q is a
monotone map that preserves these least upper bounds, then there is a monotone
map g : Q — P such that g is the right adjoint of f.

Similarly, if @ is a poset that has greatest lower bounds and g : @ — P is
a monotone map that preserves these greatest lower bounds, then there is a
monotone map f : P — @ such that f is the left adjoint of g.

We will generalise this to other categories.

Existence of all products only happens for posets

Suppose C is a small category such that for every small category Z and functor
F :7 — C, the product []; F exists.

Recall that the product represents the (contravariant) functor F' to Set given by
F(X) = Nat(AX, F)

where AX : 7 — C is the functor that maps all objects of Z to X and all
morphisms of Z to the identity endomorphism of X, and Nat(K, L) denotes the
natural transformations from a functor K to a functor L when both are functors
between the same categories. This means that:

o We have a natural transformation 7 : A[[; F — F
e The map f+— mo Af gives a bijection

C (XHF) = Nat(AX, F)

A



Now consider a set S as a category with only identity morphisms. This is a
small category. Given an object Y in C, we have a functor AY : § — C as above.
Since C has products over small categories, we have a product [[¢ AY in C and
it satisfies

c (X, 11 AY) 5 Nat(AX,AY)
S

Now C is a small category, so morphisms in it form a set Cy and C (X, [[¢ AY)
is a subset of C4.

For objects X and Y in C, we note that natural transformations AX — AY are
given by a set map S — C(X,Y) since there are no morphisms in S and thus no
commutative diagrams to be satisfied.

It follows that Map(S,C(X,Y)) is in bijection with a subset of C; and this
happens for any choice of set S! In particular, we can do this with S = Cj.

This is impossible, unless C(X,Y) is at most a singleton for each X and Y in
C. In other words, C is (essentially) a poset! (Essentially, in the sense that we
identify isomorphic objects of the category since there is a unique isomorphism
between any two isomorphic objects.)

A small category C has all products over small categories only if it is
essentially a poset.

By taking duals, we see that the same holds for co-products.

General categories
We now look at generalisations of the above results to general categories.

First of all, we should show that right adjoints preserve products and left adjoints
preserve co-products.

Secondly, we would like to understand to what extent the property that a functor
F preserves co-products implies that it has a right adjoint; i.e. that the functor F
is the left-adjoint of some functor. Note that the category on which F' acts needs
to have some co-products, otherwise the condition that it preserves co-products
is vacuous! On the other hand, as seen above, the condition that it contains all
co-products is too restrictive.

Right adjoints preserve products

Given a category C and a functor F' : C — D which is left-adjoint to a functor
G : D — C such that w : 1¢ — GF is the unit and v : FG — 1p is the co-unit.
The unit and co-unit yield a natural identification

C(X,G(YY)) =D(F(X),Y)

given by a — vy o F(a) going left to right and b — G(b) o ux going right to left.
In this section we use this identification without explicit mention of these maps.



We first show that G preserves products and F' preserves co-products.

Given an indexing category Z recall that an Z-schema, is a functor £ : Z — D.
If A(X):Z — D denotes the “constant functor” X as above, then we defined
the functor E from D°PP to Set as follows:

« Given an object X in D we associate the set E(X) = Nat(AX, F) whose
elements are natural transformations x : AX — F.
o Given a morphism f : X — Y in D, we associate the set map E(Y) — E(X)
given by n — no Af.
The product [[; F is a pair (P, ), where P is an object in D and 7 is a natural
transformation 7 : AP — E such that (P, 7) represents the functor E so that

D(X,P) S E(X) = Nat(AX, E) given by f — mo Af

is a bijection.

We now compose with the functor G, to get (G(P), G(w)) where G() is a natural
transformation AG(P) — GE. (Here both of these are considered as functors
from Z to C.) We claim that this pair (G(P),G(w)) is the product of GE in C.
Note that:

o Nat(AW,GE) corresponds to morphisms W — GE(i) for each object ¢ in
T

o morphisms W — GE(i) correspond to morphisms F(W) — E(i) by
adjunction.

It follows that we have an identification
Nat(AW,GE) = Nat(AF(W), E)

Combining this with the above identification applied to X = F(WW), we get an
identification
D(F (W), P) = Nat(AW,GE)

Using adjunction again we have an identification of C(W, G(P)) with D(F (W), P).
Thus, we get an identification

C(W,G(P)) = Nat(AW,GE)
This shows that G(P), G(r)) represents the functor GE. Thus it is the product
[[;GE inC.
In summary, we see that the right adjoint GG preserves products.

Similarly, we have seen that co-product [[; £ in C co-represents the functor £
from C to Set given as follows:

o Given an object X in C we associate the set E(X) = Nat(E, AX) whose
elements are natural transformations x : £ — AX.



o Given amorphism f : X — Y in C, we associate the set map E(X) — E(Y)
given by n — Af on.

Given that (C,~) co-represents this functor, C' is an object in C and v : E — AC
is a natural transformation such that

C(C,Z) S Nat(E,AZ)

is a bijection given by f — Af o~.
As above, we show that (F(C), F(v)) co-represents the functor FE. This shows

that F' preserves co-products.

In other words, we see that the left adjoint F' preserves co-products.

Existence of adjoints

Given a category C and a functor F' : C — D we examine how can ensure the
existence of a right adjoint.

Given an object B of D, we defined a functor F as the composite B-F’ going
from C°PP to Set, where I is the functor I’ considered as a functor from C°PP
to D°PP. More explicitly,

o For an object X of C we have Fp(X) = D(F(X), B).
e For a morphism f: X — Y in C we have

Fp(Y)=D(F(Y), B) = D(F(X), B) = Fg(X) given by a — a o F(f)

We saw that, if F' has a right adjoint G : D — C with co-unit v : FG — 1p then
Fp is represented by (G(B),vg) where vg : FG(B) — B is the instantiation of
the natural transformation v at the object B in D.

Conversely, supppose that for any object B in D, the functor Fg is representable
and let us denote the representing pair as (G(B), vg) where vp : FG(B) — B is
a morphism in D. This means that for every object B in D and every object X
in C, we have a bijection

C(X,G(B)) = D(F(X), B) given by f + vg o F(f)
Given an object A in C, we apply this to B = F(A) and X = A. This gives a
morphism w4 in C(A, GF(A)) such that vpa) o Fua) = 1p(a).

Secondly, given a morphism h : C' — B in D we apply this to X = G(C) and
the morphism h ove : FG(C) — B which is in D(FG(C), B). There is a unique
morphism &' : G(C') — G(B) such that hove = vgo F(h'). We define G(h) = I'.

We easily check that this gives rise to a functor G : D — C and that this is a
right-adjoint to F' with unit given by u and co-unit given by v.

We conclude that:



If, for every object B of D, the functor F'g is representable, then F' has
a right adjoint G and (G(B),vp : FG(B) — B) is the representing
object in C.

We can similarly work with the functor FB(X) = D(B, F(X)) to show that:

If, for every object B of D, the functor F'Z is representable, then F has
a left adjoint K and (K(B),up : B — FK(B)) is the representing
object in C.

We now look for conditions on C that can help us ensure that the functor Fg
(or F'B as appropriate) is representable.

We first need to understand co-products in a special case.

Product/Co-product where the indexing category has an initial/final
object

Given any functor E : Z — G. Recall, that the co-product [[; E is a pair (C,~)
where v € Nat(E, AC) which represents the functor E:

o Given an object X in G we associate the set E(X) = Nat(E, AX) whose
elements are natural transformations x : £ — AX.

o Given a morphism f : X — Y in C, we associate the set map E(X) — E(Y)
given by n — Afon.

This means that we have a bijection

C(C,Z) S Nat(E,AZ) given by f — Af o~

If Z has a final object Iy, for any object I in Z, we have a unique morphism
tr : I — Iy. This gives a morphism E(¢;) : E(I) — E(I). Putting this together
for objects I of Z this defines a natural transformation ¢ : F — AFE(Iy).

Given £ : E — AZ, we put f =&, : E(Ip) — Z and check that £ = Af o¢. This
shows that (E(lp),t) is the co-product [[; E. In summary:

If 7 has a final object Iy and E : Z — G is a functor, then E(Ip) is
the co-product [[ E.

Dually, we can show the following.
If 7 has an initial object Iy and E : Z — G is a functor, then E(ly)
is the product [[; E.

Co-product and Representability

Given a functor F' from C to D and an object B of D. In an earlier section we
defined the category F' | B as follows.

o An object is a pair (X, h) where X is an object in C and h: F(X) — B is
a morphism in D.



e A morphism f: (X,h) = (Y, g) is a morphism f: X — Y in C such that
h=goF(f).

We have a natural forgetful functor Hg from F | B to C. We now examine the
relation between the representability of Fg and the existence of a co-product

HNB Hp.

If the functor Fp introduced above is represented by (A4, « : F(A) — B), then
(A, @) is an object in F' | B. Moreover, for any object X in C the map

C(X,A) S D(F(X),B) = Fp(X) given by f +— a0 F(f)

is a bijection. It follows that for every object (X, h) in F' | B there is a unique
f: X — A such that h = a o F(f); this means that f : (X,h) = (4,«) is a
morphism in F' | B. In other words, (A, «) is a final object in the category
F | B. This morphism (X, h) — (A, «) for every object (X, h) in F' | B defines
the natural transformation ¢ : Hg — AA. As seen above (A4, ) is the co-product
HmB Hp.

In general the co-product is given by an object (C,~), where C' is an object of C
and v : Hgp — AC is a natural transformation of functors from F' | B to C so
that we have a bijection

C(A,Z) S Nat(Hp, AZ) given by f+— Afory

We now compose F' with Hp to obtain a functor from F' | B to D. This associates
to every object (X, h) of F' | B, the object F(X) in D. The given morphism
h: F(X) — B, thus provides a natural transformation ¢ : FHg — AB.

If we assume that F' preserves co-products, then (F(C), F'(y)) is the co-product
[1r, 5 F'Hp. Thus, we have morphism c: F'(C') — B such that ¢ = Aco F(y).
In particular, (C,c) is an object of F' |, B. One then checks that (C,c¢) is a final
object of F' | B and that v : Hg — AC is the natural transformation associated
with this final object. Hence Fg is represented by (C, ¢).

In summary, if the co-product of the forgetful functor F' | B — C
exists and this co-product is preserved by F', then the co-product
also represents the functor Fp.

This shows that:

If the co-product G(B) = [, Hp exists for every object B in D
and F' preserves co-products, then G gives a right adjoint functor
G : D — C of the functor F.

Similarly, we had introduced the category B | F whose objects are pairs
(X,h: B— F(X)) and we have a forgetful functor HZ from B | F to C. We
use arguments similar to the ones above to show:

If the product K(B) = [, H?P exists for every object B in D and
F preserves products, then K gives a left adjoint functor K : D — C
of the functor F.



The “General Adjoint Functor Theorem” and the “Special Adjoint Functor
Theorem” give some easier to check conditions on F' and D which ensure the

existence of the co-products (or products as appropriate) required in the above
statements.
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