Adjoints and Products

As already seen, there is a close connection between adjoints and products. This becomes clearer with Freyd's adjoint functor theorem which we now explain and prove.

Adjoints and products for posets

Given a poset P, we can think of it as a category with a unique morphism between two distinct objects. A functor $f: P \rightarrow Q$ between posets considered as categories is the same as a monotone map of posets. Since morphisms betwen objects of P are unique when they exist, a diagram in P is determined by a suitable subset S of P which makes up the vertices of the diagram. It follows easily that the product of this diagram exists if and only if there exists a greatest lower bound $\inf (S)$ in P. This is an element of P defined by:

$$
x \leq \inf (S) \text { in } P \text { if and only if } x \leq p, \text { for all } p \in S
$$

Similarly, the co-product of this diagram exists if and only if there exists a least upper bound $\sup (S)$. This is an element of P defined by:

$$
\sup (S) \leq x \text { in } P \text { if and only if } p \leq x, \text { for all } p \in S
$$

The functor $f: P \rightarrow Q$ is a left adjoint to $g: Q \rightarrow P$ whenever the following holds.

$$
f(x) \leq y \text { in } Q \text { if and only if } x \leq g(y) \text { in } P
$$

With the above observations, we can now try to understand the relation between products, co-products and adjoints for categories that are posets.

Right/Left adjoint preserves products/co-products

Now assume that $f: P \rightarrow Q$ is the left adjoint of $g: Q \rightarrow P$. This also means that g is the right adjoint of f. Given a subset S of Q such that $y_{0}=\inf (S)$ exists in Q, we have

$$
\begin{aligned}
& x \leq g\left(y_{0}\right) \text { if and only if } f(x) \leq y_{0} \\
& \\
& \text { if and only if } f(x) \leq y, \text { for all } y \in S \\
& \\
& \text { if and only if } x \leq g(y), \text { for all } y \in S
\end{aligned}
$$

It follows that $g\left(y_{0}\right)=\inf g(S)$. In other words, we see that if y_{0} is the product of S in Q, then $g\left(y_{0}\right)$ is the product of $g(S)$ in P.

Similarly, if $x_{0}=\sup (T)$ is the co-product of a subset T in P, then we can see that $f\left(x_{0}\right)$ is the co-product of $f(T)$ in Q.

In other words, for functors between posets, left adjoint functors preserve coproducts and right adjoint functors preserve products.

We will generalise this to other categories.

Constructing adjoints for posets

Conversely, suppose that P is a poset for which every subset has a supremum. As seen above, this is the same as saying that in this category diagrams have coproducts. Moreover, assume that we have a functor $f: P \rightarrow Q$ which preserves these co-products. Equivalently, f is a (monotone) map of posets which satisfies

$$
\sup f(T)=f(\sup (T))
$$

for every subset T in P. In other words, the least upper bound of $f(T)$ exists and is the image under f of the the least upper bound of T.

For each y in Q consider the subset $T_{y}=\{x \in P: f(x) \leq y\}$ in P. By assumption on P, the least upper bound of T_{y} exists. We denote $g(y)=\sup \left(T_{y}\right)$.
Since f preserves suprema $f(g(y))=\sup \left(f\left(T_{y}\right)\right)$. Now, x lies in T_{y} if and only if $f(x) \leq y$. Thus, $f(g(y))=\sup \left(f\left(T_{y}\right)\right) \leq y$. In particular, $g(y)$ lies in T_{y} and is the largest element in it. Hence, if $f(x) \leq y$, then $x \in T_{y}$ so $x \leq g(y)$. Conversely, if $x \leq g(y)$, then $f(x) \leq f(g(y)) \leq y$. Thus, we see that g is the right adjoint of f.

In summary, if P is a poset that has least upper bounds and $f: P \rightarrow Q$ is a monotone map that preserves these least upper bounds, then there is a monotone map $g: Q \rightarrow P$ such that g is the right adjoint of f.

Similarly, if Q is a poset that has greatest lower bounds and $g: Q \rightarrow P$ is a monotone map that preserves these greatest lower bounds, then there is a monotone map $f: P \rightarrow Q$ such that f is the left adjoint of g.

We will generalise this to other categories.

Existence of all products only happens for posets

Suppose \mathcal{C} is a small category such that for every small category \mathcal{I} and functor $F: \mathcal{I} \rightarrow \mathcal{C}$, the product $\prod_{\mathcal{I}} F$ exists.
Recall that the product represents the (contravariant) functor \bar{F} to Set given by

$$
\bar{F}(X)=\operatorname{Nat}(\Delta X, F)
$$

where $\Delta X: \mathcal{I} \rightarrow \mathcal{C}$ is the functor that maps all objects of \mathcal{I} to X and all morphisms of \mathcal{I} to the identity endomorphism of X, and $\operatorname{Nat}(K, L)$ denotes the natural transformations from a functor K to a functor L when both are functors between the same categories. This means that:

- We have a natural transformation $\pi: \Delta \prod_{\mathcal{I}} F \rightarrow F$
- The map $f \mapsto \pi \circ \Delta f$ gives a bijection

$$
\mathcal{C}\left(X, \prod_{\mathcal{I}} F\right) \stackrel{\simeq}{\rightarrow} \operatorname{Nat}(\Delta X, F)
$$

Now consider a set S as a category with only identity morphisms. This is a small category. Given an object Y in \mathcal{C}, we have a functor $\Delta Y: S \rightarrow \mathcal{C}$ as above. Since \mathcal{C} has products over small categories, we have a product $\prod_{S} \Delta Y$ in \mathcal{C} and it satisfies

$$
\mathcal{C}\left(X, \prod_{\mathcal{S}} \Delta Y\right) \stackrel{\cong}{\leftrightarrows} \operatorname{Nat}(\Delta X, \Delta Y)
$$

Now \mathcal{C} is a small category, so morphisms in it form a set C_{1} and $\mathcal{C}\left(X, \prod_{\mathcal{S}} \Delta Y\right)$ is a subset of C_{1}.
For objects X and Y in \mathcal{C}, we note that natural transformations $\Delta X \rightarrow \Delta Y$ are given by a set map $S \rightarrow \mathcal{C}(X, Y)$ since there are no morphisms in S and thus no commutative diagrams to be satisfied.
It follows that $\operatorname{Map}(S, \mathcal{C}(X, Y))$ is in bijection with a subset of C_{1} and this happens for any choice of set S ! In particular, we can do this with $S=C_{1}$.

This is impossible, unless $\mathcal{C}(X, Y)$ is at most a singleton for each X and Y in \mathcal{C}. In other words, \mathcal{C} is (essentially) a poset! (Essentially, in the sense that we identify isomorphic objects of the category since there is a unique isomorphism between any two isomorphic objects.)

A small category \mathcal{C} has all products over small categories only if it is essentially a poset.

By taking duals, we see that the same holds for co-products.

General categories

We now look at generalisations of the above results to general categories.
First of all, we should show that right adjoints preserve products and left adjoints preserve co-products.

Secondly, we would like to understand to what extent the property that a functor F preserves co-products implies that it has a right adjoint; i.e. that the functor F is the left-adjoint of some functor. Note that the category on which F acts needs to have some co-products, otherwise the condition that it preserves co-products is vacuous! On the other hand, as seen above, the condition that it contains all co-products is too restrictive.

Right adjoints preserve products

Given a category \mathcal{C} and a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ which is left-adjoint to a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ such that $u: 1_{\mathcal{C}} \rightarrow G F$ is the unit and $v: F G \rightarrow 1_{\mathcal{D}}$ is the co-unit. The unit and co-unit yield a natural identification

$$
\mathcal{C}(X, G(Y))=\mathcal{D}(F(X), Y)
$$

given by $a \mapsto v_{Y} \circ F(a)$ going left to right and $b \mapsto G(b) \circ u_{X}$ going right to left. In this section we use this identification without explicit mention of these maps.

We first show that G preserves products and F preserves co-products.
Given an indexing category \mathcal{I} recall that an \mathcal{I}-schema, is a functor $E: \mathcal{I} \rightarrow \mathcal{D}$. If $\Delta(X): \mathcal{I} \rightarrow \mathcal{D}$ denotes the "constant functor" X as above, then we defined the functor \bar{E} from $\mathcal{D}^{\text {opp }}$ to Set as follows:

- Given an object X in \mathcal{D} we associate the set $\bar{E}(X)=\operatorname{Nat}(\Delta X, E)$ whose elements are natural transformations $\chi: \Delta X \rightarrow E$.
- Given a morphism $f: X \rightarrow Y$ in \mathcal{D}, we associate the set map $\bar{E}(Y) \rightarrow \bar{E}(X)$ given by $\eta \mapsto \eta \circ \Delta f$.
The product $\prod_{\mathcal{I}} E$ is a pair (P, π), where P is an object in \mathcal{D} and π is a natural transformation $\pi: \Delta P \rightarrow E$ such that (P, π) represents the functor \bar{E} so that

$$
\mathcal{D}(X, P) \stackrel{\simeq}{\leftrightarrows} \bar{E}(X)=\operatorname{Nat}(\Delta X, E) \text { given by } f \mapsto \pi \circ \Delta f
$$

is a bijection.
We now compose with the functor G, to get $(G(P), G(\pi))$ where $G(\pi)$ is a natural transformation $\Delta G(P) \rightarrow G E$. (Here both of these are considered as functors from \mathcal{I} to \mathcal{C}.) We claim that this pair $(G(P), G(\pi))$ is the product of $G E$ in \mathcal{C}. Note that:

- $\operatorname{Nat}(\Delta W, G E)$ corresponds to morphisms $W \rightarrow G E(i)$ for each object i in I.
- morphisms $W \rightarrow G E(i)$ correspond to morphisms $F(W) \rightarrow E(i)$ by adjunction.

It follows that we have an identification

$$
\operatorname{Nat}(\Delta W, G E)=\operatorname{Nat}(\Delta F(W), E)
$$

Combining this with the above identification applied to $X=F(W)$, we get an identification

$$
\mathcal{D}(F(W), P) \stackrel{\simeq}{\rightarrow} \operatorname{Nat}(\Delta W, G E)
$$

Using adjunction again we have an identification of $\mathcal{C}(W, G(P))$ with $\mathcal{D}(F(W), P)$. Thus, we get an identification

$$
\mathcal{C}(W, G(P)) \stackrel{\simeq}{\rightrightarrows} \operatorname{Nat}(\Delta W, G E)
$$

This shows that $G(P), G(\pi))$ represents the functor $\overline{G E}$. Thus it is the product $\prod_{\mathcal{I}} G E$ in \mathcal{C}.
In summary, we see that the right adjoint G preserves products.
Similarly, we have seen that co-product $\coprod_{\mathcal{I}} E$ in \mathcal{C} co-represents the functor \underline{E} from \mathcal{C} to Set given as follows:

- Given an object X in \mathcal{C} we associate the set $\underline{E}(X)=\operatorname{Nat}(E, \Delta X)$ whose elements are natural transformations $\chi: E \rightarrow \Delta X$.
- Given a morphism $f: X \rightarrow Y$ in \mathcal{C}, we associate the set map $\underline{E}(X) \rightarrow \underline{E}(Y)$ given by $\eta \mapsto \Delta f \circ \eta$.

Given that (C, γ) co-represents this functor, C is an object in \mathcal{C} and $\gamma: E \rightarrow \Delta C$ is a natural transformation such that

$$
\mathcal{C}(C, Z) \xrightarrow{\sim} \operatorname{Nat}(E, \Delta Z)
$$

is a bijection given by $f \mapsto \Delta f \circ \gamma$.
As above, we show that $(F(C), F(\gamma))$ co-represents the functor $F E$. This shows that F preserves co-products.
In other words, we see that the left adjoint F preserves co-products.

Existence of adjoints

Given a category \mathcal{C} and a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ we examine how can ensure the existence of a right adjoint.

Given an object B of \mathcal{D}, we defined a functor F_{B} as the composite $B \cdot F^{\prime}$ going from $\mathcal{C}^{\text {opp }}$ to Set, where F^{\prime} is the functor F considered as a functor from $\mathcal{C}^{\text {opp }}$ to $\mathcal{D}^{\text {opp }}$. More explicitly,

- For an object X of \mathcal{C} we have $F_{B}(X)=\mathcal{D}(F(X), B)$.
- For a morphism $f: X \rightarrow Y$ in \mathcal{C} we have

$$
F_{B}(Y)=\mathcal{D}(F(Y), B) \rightarrow \mathcal{D}(F(X), B)=F_{B}(X) \text { given by } a \mapsto a \circ F(f)
$$

We saw that, if F has a right adjoint $G: \mathcal{D} \rightarrow \mathcal{C}$ with co-unit $v: F G \rightarrow 1_{\mathcal{D}}$ then F_{B} is represented by $\left(G(B), v_{B}\right)$ where $v_{B}: F G(B) \rightarrow B$ is the instantiation of the natural transformation v at the object B in \mathcal{D}.

Conversely, supppose that for any object B in \mathcal{D}, the functor F_{B} is representable and let us denote the representing pair as $\left(G(B), v_{B}\right)$ where $v_{B}: F G(B) \rightarrow B$ is a morphism in \mathcal{D}. This means that for every object B in \mathcal{D} and every object X in \mathcal{C}, we have a bijection

$$
\mathcal{C}(X, G(B)) \stackrel{\simeq}{\rightrightarrows} \mathcal{D}(F(X), B) \text { given by } f \mapsto v_{B} \circ F(f)
$$

Given an object A in \mathcal{C}, we apply this to $B=F(A)$ and $X=A$. This gives a morphism u_{A} in $\mathcal{C}(A, G F(A))$ such that $v_{F(A)} \circ F\left(u_{A}\right)=1_{F(A)}$.
Secondly, given a morphism $h: C \rightarrow B$ in \mathcal{D} we apply this to $X=G(C)$ and the morphism $h \circ v_{C}: F G(C) \rightarrow B$ which is in $\mathcal{D}(F G(C), B)$. There is a unique morphism $h^{\prime}: G(C) \rightarrow G(B)$ such that $h \circ v_{C}=v_{B} \circ F\left(h^{\prime}\right)$. We define $G(h)=h^{\prime}$.

We easily check that this gives rise to a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ and that this is a right-adjoint to F with unit given by u and co-unit given by v.

We conclude that:

If, for every object B of \mathcal{D}, the functor F_{B} is representable, then F has a right adjoint G and $\left(G(B), v_{B}: F G(B) \rightarrow B\right)$ is the representing object in \mathcal{C}.

We can similarly work with the functor $F^{B}(X)=\mathcal{D}(B, F(X))$ to show that:
If, for every object B of \mathcal{D}, the functor F^{B} is representable, then F has a left adjoint K and $\left(K(B), u_{B}: B \rightarrow F K(B)\right)$ is the representing object in \mathcal{C}.

We now look for conditions on C that can help us ensure that the functor F_{B} (or F^{B} as appropriate) is representable.

We first need to understand co-products in a special case.

Product/Co-product where the indexing category has an initial/final object

Given any functor $E: \mathcal{I} \rightarrow \mathcal{G}$. Recall, that the co-product $\coprod_{\mathcal{I}} E$ is a pair (C, γ) where $\gamma \in \operatorname{Nat}(E, \Delta C)$ which represents the functor \underline{E} :

- Given an object X in \mathcal{G} we associate the set $\underline{E}(X)=\operatorname{Nat}(E, \Delta X)$ whose elements are natural transformations $\chi: E \rightarrow \Delta X$.
- Given a morphism $f: X \rightarrow Y$ in \mathcal{C}, we associate the set map $\underline{E}(X) \rightarrow \underline{E}(Y)$ given by $\eta \mapsto \Delta f \circ \eta$.

This means that we have a bijection

$$
\mathcal{C}(C, Z) \xrightarrow{\simeq} \operatorname{Nat}(E, \Delta Z) \text { given by } f \mapsto \Delta f \circ \gamma
$$

If \mathcal{I} has a final object I_{0}, for any object I in \mathcal{I}, we have a unique morphism $\iota_{I}: I \rightarrow I_{0}$. This gives a morphism $E\left(\iota_{I}\right): E(I) \rightarrow E\left(I_{0}\right)$. Putting this together for objects I of \mathcal{I} this defines a natural transformation $\iota: E \rightarrow \Delta E\left(I_{0}\right)$.

Given $\xi: E \rightarrow \Delta Z$, we put $f=\xi_{I_{0}}: E\left(I_{0}\right) \rightarrow Z$ and check that $\xi=\Delta f \circ \iota$. This shows that $\left(E\left(I_{0}\right), \iota\right)$ is the co-product $\coprod_{\mathcal{I}} E$. In summary:

If \mathcal{I} has a final object I_{0} and $E: \mathcal{I} \rightarrow \mathcal{G}$ is a functor, then $E\left(I_{0}\right)$ is the co-product $\coprod_{\mathcal{I}} E$.

Dually, we can show the following.
If \mathcal{I} has an initial object I_{0} and $E: \mathcal{I} \rightarrow \mathcal{G}$ is a functor, then $E\left(I_{0}\right)$ is the product $\prod_{\mathcal{I}} E$.

Co-product and Representability

Given a functor F from \mathcal{C} to \mathcal{D} and an object B of \mathcal{D}. In an earlier section we defined the category $F \downarrow B$ as follows.

- An object is a pair (X, h) where X is an object in \mathcal{C} and $h: F(X) \rightarrow B$ is a morphism in \mathcal{D}.
- A morphism $f:(X, h) \rightarrow(Y, g)$ is a morphism $f: X \rightarrow Y$ in \mathcal{C} such that $h=g \circ F(f)$.

We have a natural forgetful functor H_{B} from $F \downarrow B$ to \mathcal{C}. We now examine the relation between the representability of F_{B} and the existence of a co-product $\amalg_{F \downarrow B} H_{B}$.
If the functor F_{B} introduced above is represented by $(A, \alpha: F(A) \rightarrow B)$, then (A, α) is an object in $F \downarrow B$. Moreover, for any object X in \mathcal{C} the map

$$
\mathcal{C}(X, A) \xlongequal{\simeq} \mathcal{D}(F(X), B)=F_{B}(X) \text { given by } f \mapsto \alpha \circ F(f)
$$

is a bijection. It follows that for every object (X, h) in $F \downarrow B$ there is a unique $f: X \rightarrow A$ such that $h=\alpha \circ F(f)$; this means that $f:(X, h) \rightarrow(A, \alpha)$ is a morphism in $F \downarrow B$. In other words, (A, α) is a final object in the category $F \downarrow B$. This morphism $(X, h) \rightarrow(A, \alpha)$ for every object (X, h) in $F \downarrow B$ defines the natural transformation $\iota: H_{B} \rightarrow \Delta A$. As seen above (A, ι) is the co-product $\amalg_{F \downarrow B} H_{B}$.
In general the co-product is given by an object (C, γ), where C is an object of \mathcal{C} and $\gamma: H_{B} \rightarrow \Delta C$ is a natural transformation of functors from $F \downarrow B$ to \mathcal{C} so that we have a bijection

$$
\mathcal{C}(A, Z) \stackrel{\simeq}{\rightrightarrows} \operatorname{Nat}\left(H_{B}, \Delta Z\right) \text { given by } f \mapsto \Delta f \circ \gamma
$$

We now compose F with H_{B} to obtain a functor from $F \downarrow B$ to \mathcal{D}. This associates to every object (X, h) of $F \downarrow B$, the object $F(X)$ in \mathcal{D}. The given morphism $h: F(X) \rightarrow B$, thus provides a natural transformation $\phi: F H_{B} \rightarrow \Delta B$.

If we assume that F preserves co-products, then $(F(C), F(\gamma))$ is the co-product $\coprod_{F \downarrow B} F H_{B}$. Thus, we have morphism $c: F(C) \rightarrow B$ such that $\phi=\Delta c \circ F(\gamma)$. In particular, (C, c) is an object of $F \downarrow B$. One then checks that (C, c) is a final object of $F \downarrow B$ and that $\gamma: H_{B} \rightarrow \Delta C$ is the natural transformation associated with this final object. Hence F_{B} is represented by (C, c).

In summary, if the co-product of the forgetful functor $F \downarrow B \rightarrow \mathcal{C}$ exists and this co-product is preserved by F, then the co-product also represents the functor F_{B}.

This shows that:
If the co-product $G(B)=\coprod_{F \downarrow B} H_{B}$ exists for every object B in \mathcal{D} and F preserves co-products, then G gives a right adjoint functor $G: \mathcal{D} \rightarrow \mathcal{C}$ of the functor F.

Similarly, we had introduced the category $B \downarrow F$ whose objects are pairs $(X, h: B \rightarrow F(X))$ and we have a forgetful functor H^{B} from $B \downarrow F$ to \mathcal{C}. We use arguments similar to the ones above to show:

If the product $K(B)=\prod_{B \downarrow F} H^{B}$ exists for every object B in \mathcal{D} and F preserves products, then K gives a left adjoint functor $K: \mathcal{D} \rightarrow \mathcal{C}$ of the functor F.

The "General Adjoint Functor Theorem" and the "Special Adjoint Functor Theorem" give some easier to check conditions on F and \mathcal{D} which ensure the existence of the co-products (or products as appropriate) required in the above statements.

