
Adjoints and Products
As already seen, there is a close connection between adjoints and products. This
becomes clearer with Freyd’s adjoint functor theorem which we now explain and
prove.

Adjoints and products for posets
Given a poset P , we can think of it as a category with a unique morphism
between two distinct objects. A functor f : P → Q between posets considered
as categories is the same as a monotone map of posets. Since morphisms betwen
objects of P are unique when they exist, a diagram in P is determined by a
suitable subset S of P which makes up the vertices of the diagram. It follows
easily that the product of this diagram exists if and only if there exists a greatest
lower bound inf(S) in P . This is an element of P defined by:

x ≤ inf(S) in P if and only if x ≤ p, for all p ∈ S

Similarly, the co-product of this diagram exists if and only if there exists a least
upper bound sup(S). This is an element of P defined by:

sup(S) ≤ x in P if and only if p ≤ x, for all p ∈ S

The functor f : P → Q is a left adjoint to g : Q → P whenever the following
holds.

f(x) ≤ y in Q if and only if x ≤ g(y) in P
With the above observations, we can now try to understand the relation between
products, co-products and adjoints for categories that are posets.

Right/Left adjoint preserves products/co-products

Now assume that f : P → Q is the left adjoint of g : Q→ P . This also means
that g is the right adjoint of f . Given a subset S of Q such that y0 = inf(S)
exists in Q, we have

x ≤ g(y0) if and only if f(x) ≤ y0

if and only if f(x) ≤ y, for all y ∈ S
if and only if x ≤ g(y), for all y ∈ S

It follows that g(y0) = inf g(S). In other words, we see that if y0 is the product
of S in Q, then g(y0) is the product of g(S) in P .

Similarly, if x0 = sup(T ) is the co-product of a subset T in P , then we can see
that f(x0) is the co-product of f(T ) in Q.

In other words, for functors between posets, left adjoint functors preserve co-
products and right adjoint functors preserve products.

We will generalise this to other categories.
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Constructing adjoints for posets

Conversely, suppose that P is a poset for which every subset has a supremum.
As seen above, this is the same as saying that in this category diagrams have co-
products. Moreover, assume that we have a functor f : P → Q which preserves
these co-products. Equivalently, f is a (monotone) map of posets which satisfies

sup f(T ) = f (sup(T ))

for every subset T in P . In other words, the least upper bound of f(T ) exists
and is the image under f of the the least upper bound of T .

For each y in Q consider the subset Ty = {x ∈ P : f(x) ≤ y} in P . By
assumption on P , the least upper bound of Ty exists. We denote g(y) = sup(Ty).

Since f preserves suprema f(g(y)) = sup(f(Ty)). Now, x lies in Ty if and only
if f(x) ≤ y. Thus, f(g(y)) = sup(f(Ty)) ≤ y. In particular, g(y) lies in Ty

and is the largest element in it. Hence, if f(x) ≤ y, then x ∈ Ty so x ≤ g(y).
Conversely, if x ≤ g(y), then f(x) ≤ f(g(y)) ≤ y. Thus, we see that g is the
right adjoint of f .

In summary, if P is a poset that has least upper bounds and f : P → Q is a
monotone map that preserves these least upper bounds, then there is a monotone
map g : Q→ P such that g is the right adjoint of f .

Similarly, if Q is a poset that has greatest lower bounds and g : Q → P is
a monotone map that preserves these greatest lower bounds, then there is a
monotone map f : P → Q such that f is the left adjoint of g.

We will generalise this to other categories.

Existence of all products only happens for posets

Suppose C is a small category such that for every small category I and functor
F : I → C, the product

∏
I F exists.

Recall that the product represents the (contravariant) functor F to Set given by

F (X) = Nat(∆X,F )

where ∆X : I → C is the functor that maps all objects of I to X and all
morphisms of I to the identity endomorphism of X, and Nat(K,L) denotes the
natural transformations from a functor K to a functor L when both are functors
between the same categories. This means that:

• We have a natural transformation π : ∆
∏

I F → F
• The map f 7→ π ◦∆f gives a bijection

C

(
X,
∏
I
F

)
'→ Nat(∆X,F )
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Now consider a set S as a category with only identity morphisms. This is a
small category. Given an object Y in C, we have a functor ∆Y : S → C as above.
Since C has products over small categories, we have a product

∏
S ∆Y in C and

it satisfies

C

(
X,
∏
S

∆Y
)

'→ Nat(∆X,∆Y )

Now C is a small category, so morphisms in it form a set C1 and C (X,
∏

S ∆Y )
is a subset of C1.

For objects X and Y in C, we note that natural transformations ∆X → ∆Y are
given by a set map S → C(X,Y ) since there are no morphisms in S and thus no
commutative diagrams to be satisfied.

It follows that Map(S, C(X,Y )) is in bijection with a subset of C1 and this
happens for any choice of set S! In particular, we can do this with S = C1.

This is impossible, unless C(X,Y ) is at most a singleton for each X and Y in
C. In other words, C is (essentially) a poset! (Essentially, in the sense that we
identify isomorphic objects of the category since there is a unique isomorphism
between any two isomorphic objects.)

A small category C has all products over small categories only if it is
essentially a poset.

By taking duals, we see that the same holds for co-products.

General categories
We now look at generalisations of the above results to general categories.

First of all, we should show that right adjoints preserve products and left adjoints
preserve co-products.

Secondly, we would like to understand to what extent the property that a functor
F preserves co-products implies that it has a right adjoint; i.e. that the functor F
is the left-adjoint of some functor. Note that the category on which F acts needs
to have some co-products, otherwise the condition that it preserves co-products
is vacuous! On the other hand, as seen above, the condition that it contains all
co-products is too restrictive.

Right adjoints preserve products

Given a category C and a functor F : C → D which is left-adjoint to a functor
G : D → C such that u : 1C → GF is the unit and v : FG→ 1D is the co-unit.
The unit and co-unit yield a natural identification

C(X,G(Y )) = D(F (X), Y )

given by a 7→ vY ◦ F (a) going left to right and b 7→ G(b) ◦ uX going right to left.
In this section we use this identification without explicit mention of these maps.
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We first show that G preserves products and F preserves co-products.

Given an indexing category I recall that an I-schema, is a functor E : I → D.
If ∆(X) : I → D denotes the “constant functor” X as above, then we defined
the functor E from Dopp to Set as follows:

• Given an object X in D we associate the set E(X) = Nat(∆X,E) whose
elements are natural transformations χ : ∆X → E.

• Given a morphism f : X → Y in D, we associate the set map E(Y )→ E(X)
given by η 7→ η ◦∆f .

The product
∏

I E is a pair (P, π), where P is an object in D and π is a natural
transformation π : ∆P → E such that (P, π) represents the functor E so that

D(X,P ) '→ E(X) = Nat(∆X,E) given by f 7→ π ◦∆f

is a bijection.

We now compose with the functor G, to get (G(P ), G(π)) where G(π) is a natural
transformation ∆G(P )→ GE. (Here both of these are considered as functors
from I to C.) We claim that this pair (G(P ), G(π)) is the product of GE in C.
Note that:

• Nat(∆W,GE) corresponds to morphisms W → GE(i) for each object i in
I.

• morphisms W → GE(i) correspond to morphisms F (W ) → E(i) by
adjunction.

It follows that we have an identification

Nat(∆W,GE) = Nat(∆F (W ), E)

Combining this with the above identification applied to X = F (W ), we get an
identification

D(F (W ), P ) '→ Nat(∆W,GE)

Using adjunction again we have an identification of C(W,G(P )) with D(F (W ), P ).
Thus, we get an identification

C(W,G(P )) '→ Nat(∆W,GE)

This shows that G(P ), G(π)) represents the functor GE. Thus it is the product∏
I GE in C.

In summary, we see that the right adjoint G preserves products.

Similarly, we have seen that co-product
∐

I E in C co-represents the functor E
from C to Set given as follows:

• Given an object X in C we associate the set E(X) = Nat(E,∆X) whose
elements are natural transformations χ : E → ∆X.
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• Given a morphism f : X → Y in C, we associate the set map E(X)→ E(Y )
given by η 7→ ∆f ◦ η.

Given that (C, γ) co-represents this functor, C is an object in C and γ : E → ∆C
is a natural transformation such that

C(C,Z) '→ Nat(E,∆Z)

is a bijection given by f 7→ ∆f ◦ γ.

As above, we show that (F (C), F (γ)) co-represents the functor FE. This shows
that F preserves co-products.

In other words, we see that the left adjoint F preserves co-products.

Existence of adjoints

Given a category C and a functor F : C → D we examine how can ensure the
existence of a right adjoint.

Given an object B of D, we defined a functor FB as the composite B.F ′ going
from Copp to Set, where F ′ is the functor F considered as a functor from Copp

to Dopp. More explicitly,

• For an object X of C we have FB(X) = D(F (X), B).
• For a morphism f : X → Y in C we have

FB(Y ) = D(F (Y ), B)→ D(F (X), B) = FB(X) given by a 7→ a ◦ F (f)

We saw that, if F has a right adjoint G : D → C with co-unit v : FG→ 1D then
FB is represented by (G(B), vB) where vB : FG(B)→ B is the instantiation of
the natural transformation v at the object B in D.

Conversely, supppose that for any object B in D, the functor FB is representable
and let us denote the representing pair as (G(B), vB) where vB : FG(B)→ B is
a morphism in D. This means that for every object B in D and every object X
in C, we have a bijection

C(X,G(B)) '→ D(F (X), B) given by f 7→ vB ◦ F (f)

Given an object A in C, we apply this to B = F (A) and X = A. This gives a
morphism uA in C(A,GF (A)) such that vF (A) ◦ F (uA) = 1F (A).

Secondly, given a morphism h : C → B in D we apply this to X = G(C) and
the morphism h ◦ vC : FG(C)→ B which is in D(FG(C), B). There is a unique
morphism h′ : G(C)→ G(B) such that h◦vC = vB ◦F (h′). We define G(h) = h′.

We easily check that this gives rise to a functor G : D → C and that this is a
right-adjoint to F with unit given by u and co-unit given by v.

We conclude that:
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If, for every object B of D, the functor FB is representable, then F has
a right adjoint G and (G(B), vB : FG(B)→ B) is the representing
object in C.

We can similarly work with the functor FB(X) = D(B,F (X)) to show that:

If, for every object B ofD, the functor FB is representable, then F has
a left adjoint K and (K(B), uB : B → FK(B)) is the representing
object in C.

We now look for conditions on C that can help us ensure that the functor FB

(or FB as appropriate) is representable.

We first need to understand co-products in a special case.

Product/Co-product where the indexing category has an initial/final
object

Given any functor E : I → G. Recall, that the co-product
∐

I E is a pair (C, γ)
where γ ∈ Nat(E,∆C) which represents the functor E:

• Given an object X in G we associate the set E(X) = Nat(E,∆X) whose
elements are natural transformations χ : E → ∆X.

• Given a morphism f : X → Y in C, we associate the set map E(X)→ E(Y )
given by η 7→ ∆f ◦ η.

This means that we have a bijection

C(C,Z) '→ Nat(E,∆Z) given by f 7→ ∆f ◦ γ

If I has a final object I0, for any object I in I, we have a unique morphism
ιI : I → I0. This gives a morphism E(ιI) : E(I)→ E(I0). Putting this together
for objects I of I this defines a natural transformation ι : E → ∆E(I0).

Given ξ : E → ∆Z, we put f = ξI0 : E(I0)→ Z and check that ξ = ∆f ◦ ι. This
shows that (E(I0), ι) is the co-product

∐
I E. In summary:

If I has a final object I0 and E : I → G is a functor, then E(I0) is
the co-product

∐
I E.

Dually, we can show the following.

If I has an initial object I0 and E : I → G is a functor, then E(I0)
is the product

∏
I E.

Co-product and Representability

Given a functor F from C to D and an object B of D. In an earlier section we
defined the category F ↓ B as follows.

• An object is a pair (X,h) where X is an object in C and h : F (X)→ B is
a morphism in D.
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• A morphism f : (X,h)→ (Y, g) is a morphism f : X → Y in C such that
h = g ◦ F (f).

We have a natural forgetful functor HB from F ↓ B to C. We now examine the
relation between the representability of FB and the existence of a co-product∐

F ↓B HB .

If the functor FB introduced above is represented by (A,α : F (A)→ B), then
(A,α) is an object in F ↓ B. Moreover, for any object X in C the map

C(X,A) '→ D(F (X), B) = FB(X) given by f 7→ α ◦ F (f)

is a bijection. It follows that for every object (X,h) in F ↓ B there is a unique
f : X → A such that h = α ◦ F (f); this means that f : (X,h) → (A,α) is a
morphism in F ↓ B. In other words, (A,α) is a final object in the category
F ↓ B. This morphism (X,h)→ (A,α) for every object (X,h) in F ↓ B defines
the natural transformation ι : HB → ∆A. As seen above (A, ι) is the co-product∐

F ↓B HB .

In general the co-product is given by an object (C, γ), where C is an object of C
and γ : HB → ∆C is a natural transformation of functors from F ↓ B to C so
that we have a bijection

C(A,Z) '→ Nat(HB ,∆Z) given by f 7→ ∆f ◦ γ

We now compose F withHB to obtain a functor from F ↓ B to D. This associates
to every object (X,h) of F ↓ B, the object F (X) in D. The given morphism
h : F (X)→ B, thus provides a natural transformation φ : FHB → ∆B.

If we assume that F preserves co-products, then (F (C), F (γ)) is the co-product∐
F ↓B FHB. Thus, we have morphism c : F (C)→ B such that φ = ∆c ◦ F (γ).

In particular, (C, c) is an object of F ↓ B. One then checks that (C, c) is a final
object of F ↓ B and that γ : HB → ∆C is the natural transformation associated
with this final object. Hence FB is represented by (C, c).

In summary, if the co-product of the forgetful functor F ↓ B → C
exists and this co-product is preserved by F , then the co-product
also represents the functor FB .

This shows that:

If the co-product G(B) =
∐

F ↓B HB exists for every object B in D
and F preserves co-products, then G gives a right adjoint functor
G : D → C of the functor F .

Similarly, we had introduced the category B ↓ F whose objects are pairs
(X,h : B → F (X)) and we have a forgetful functor HB from B ↓ F to C. We
use arguments similar to the ones above to show:

If the product K(B) =
∏

B↓F H
B exists for every object B in D and

F preserves products, then K gives a left adjoint functor K : D → C
of the functor F .
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The “General Adjoint Functor Theorem” and the “Special Adjoint Functor
Theorem” give some easier to check conditions on F and D which ensure the
existence of the co-products (or products as appropriate) required in the above
statements.
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