Quiz 6: Products

Question

Fix a field k.
Consider the category Vect $_{k}$ with objects vector spaces over k and morphisms as k-linear maps between vector spaces.

Consider the diagram D given by

where $N_{1}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and $N_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
Find suitable matrices M_{1} and M_{2} so that if $Z=k^{2}$ then

gives the product of the diagram D in the category Vect_{k}.

Answer

Note that the first requirement is that $N_{1} M_{1}=N_{2} M_{2}$ so that the following diagram commutes:

This shows that $\left(N_{1}, N_{2}\right)$ gives a morphism from Z to the diagram D.
What we are asking is that $\left(Z, N_{1}, N_{2}\right)$ be the fibre-product $A \times_{C} B$ in the category Vect $_{k}$.

One useful observation is that since $N_{1}: A \rightarrow C$ is an isomorphism, we can conclude that $M_{2}: A \times_{C} B \rightarrow B$ is an isomorphism. Since, N_{2} is also an isomorphism, we see that $N_{2} \circ M_{2}: A \times_{C} B \rightarrow C$ is an isomorphism.

It follows that $A \times_{C} B$ is isomorphic to C under $N_{2} \circ M_{2}=N_{1} \circ M_{1}$. Hence, we set $Z=k^{2}$ as was done in the question. In fact, we can take $N_{2} \circ M_{2}=N_{1} \circ M_{1}$ to be identity since the fibre-product is determined upto isomorphism.

Thus, it is enough to take

$$
M_{1}=N_{1}^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \text { and } M_{2}=N_{2}^{-1}=\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)
$$

More generally, we can take $M_{1}^{\prime}=M_{1} K$ and $M_{2}^{\prime}=M_{2} K$ for any invertible matrix K and M_{1} and M_{2} as above.

