Revisiting Yoneda Lemma

Given a category C, we defined the functor A" from C°PP to Set as follows:

o A(X)=C(X,A) for an object X in C.
e A(f)(a)=ao f giving A(f): A(Y) = A(X) for a morphism f: X - Y
in C.
Similarly, we defined the functor A. from C to Set as follows:
o A(X)=C(A,X) for an object X in C.

o A(f)(a) = foagiving A.(f): A.(X) = A.(Y) for a morphism f: X —- Y
in C.

Representability and Co-representability

If F is a functor from C°PP to Set, note that for an element a € A'(X) = C(X, A),
we get a set map F(a) : F(A) — F(X). Thus, we get a pairing

F(A) x A(X) — F(X) given by (a,a) — F(a)(«)

Fixing o € F(A), this allows us to define, for each object X, a map dax :
A (X) — F(X) given by a — F(a)(a). We see easily that this gives a natural
transformation & : A~ — F. Conversely, given a natural transformation n : A" —
F, we can define « as the image of 14 under n4 : A'(A) — F(A) and check that
n=a.

In summary, we have an natural identification between elements « € F(A) and
natural transformations & : A° — F'. This is the Yoneda lemma for contravariant
functors F'.

We say that F is represented by (A, «) if this natural transformation is an
isomorphism of functors; equivalently, this means that ax : C(X, A) — F(X) is
a bijection for each object X in C.

Similarly, given a functor F' from C to Set we have a pairing
F(A) x A.(X) — F(X) given by (a,a) — F(a)(a)

since a € A.(X) = C(A, X) gives a set map F'(a) : F(A) — F(X). By repeating
the argument above with minor modifications we see that this gives a natural
identification between elements oo € F'(A) and natural transformations & : A. —
F'. This is the Yoneda lemma for (covariant) functors F'.

We say that F' is co-represented by (A, ) if this natural transformation is an
isomorphism of functors; equivalently, this means that ax : C(4,X) — F(X) is
a bijection for each object X in C.

Universals represent functors

We will now see that universal objects can be seen as representing and co-
representing functors.



To begin this discussion consider the functor U that sends every object of C to
the singleton set {-} and every morphism in C to the identity map 1.y of this
singleton set. Note that this is also a functor from C°PP to Set.

What can we say about representability and co-representability of U?

If (A, «) represents U, then « = - is the unique element of U(A) = {-} and for
every object X in C, this gives a bijection & : C(X,A) — U(X) = {-}. This
means that there is a unique morphism X — A for every object X in C. In other
words,

If A represents the singleton functor U, then A is a final object in C.

Similarly, if (B, 3) co-represents U, then 8 unique element of U(B) = {-} and
for every objection X in C, this gives a bijection 3 : C(B,X) — UXx)=1{}
This means that there is a unique morphism B — X for every object X in C. In
other words,

If B co-represents the singleton functor U, then B is an initial object
in C.

Products and Limits of Schemas

Given a category C, we saw that a diagram D in C based on a directed graph
I" is described precisely by a functor Fp : Pr — C, where Pr is the category
where objects are vertices in I' and morphisms are directed paths in T'.

More generally, given a (small) category Z, we define an Z-schema in C to be a
functor F' : Z — C.

Given an object X in C, we denote by AX the functor from Z to C which sends
every object of Z to X and every morphism in Z to the identity morphism 1x.
Note that this makes sense independent of the category Z, so we use the same
notation AX without worrying about the category Z.

We noted that a morphism from X to the diagram D is described precisely by a
natural transformation y : AX — Fp. Similarly, a morphism from the diagram
D to Z is precisely a natural transformation £ : Fp — AZ. We then looked
at the category of pairs (X, x). A final object in this category, if it exists, is
precisely the product [] D. Similarly, if there is an initial object in the category
of pairs (Z,§), it is the co-product [] D.

More generally, we can consider the category of pairs (X, x) where x : AX — F
is a natural transformation of functors Z to C where morphisms (X, x) — (Y, 7n)
are morphisms f : X — Y in C that yield commutative diagrams

AX 21, Ay
Xl ln
F F




where Af : AX — AY is the natural transformation that associates f to every
object of Z. In other words, we require no Af = x for f : X — Y to yield a
morphism (X, x) — (Y, 7).

We then define the product (][, F, m) of the Z-schema F' in C as the final object

in this category, if it exists.

Similar, we consider the category of pairs (Z,£) where £ : F — AZ is a natural
transformation of functors Z to C, where morphisms (Z,{) — (W, w) are given
by morphisms f : Z — W such that (Af)o& = w.

We then define the co-product (][, F,¢) of the Z-schema F' in C as the initial
object in this category, if it exists.

We now exhibit these in terms of representation and co-representation of functors.

Functors associated with Schemas

Given a Z-scheme F' in C. (Note that this is another name for a functor F' from
7 to C!)

We define a functor F' from C°PP to Set as follows:

 Given an object X in C we associate the set F(X) whose elements are
natural transformations y : AX — F.
o Given a morphism f : X — Y in C, we associate the set map F(Y) — F(X)
given by n — no Af.
If (A, a) represents the functor F, then o : AA — F is a natural transformation
such that the for every object X in C,

f — ao Af gives a bijection A'(X) =C(X,4) — F(X)

Put differently, given a x : AX — F, there is a unique f : X — A such that
X = ao Af. This is precisely the same as saying that (A, «) is the product

(HI F,m).
Similarly, we define a functor £ from C to Set as follows:

o Given an object Z in C we associate the set F(Z) whose elements are
natural transformations £ : FF — AZ.
o Given a morphism f : Z — W in C, we associate the set map F(Z) — F(W)

given by £ — (Af)o&.
If (B, ) co-represents the functor F, then 5 : F — AB is a natural transforma-
tion such that the for every object Z in C,
f— (Af) o p gives a bijection B.(X) =C(B,Z) — F(Z)

Put differently, given a £ : F' — AZ, there is a unique f : B — Z such that
& = (Af)o . This is precisely the same as saying that (B, /3) is the co-product

(HIF7 L).



Adjoint functors and representability

Given a functor F': C — D and an object A in D, we ask for the representability
of the functor F'4 from C°PP to Set defined as follows:

o For an object X of C we define Fu(X) = D(F(X), A).
e For a morphism f: X — Y in CD we define

Fy(Y)=D(F(Y),A) - D(F(X),A) = Fa(X) given by a — a o F(f)
Note that F' can also be seen as a functor C°PP to D°PP in an obvious way; let us
denote this functor as F’. We then check that F4 is the composite functor A F”.
For (Z, z) to represent this functor, the following conditions must hold.

e Zis an object in C and z : F(Z) — A is a morphism in D.
e For an object X in C, we have a bijection

Z(X)=C(X,Z) - D(F(X),A) = Fs(X) given by f — zo F(f)
If G: D — Cis a right adjoint to F, and vy : FGA — A is the co-unit at the
object A of D, we see that (GA,va) represents the functor Fj.
Similarly, we can define the functor F4 from C to Set as follows:

« For an object X of C we define FA(X) = D(A, F(X)).
e For a morphism f: X — Y in CD we define

FAX)=D(A,F(X)) = D(A,F(Y)) = FA(Y) given by a — F(f) oa
We can check that F4 = A.F is the composite functor.

For (W, w) to co-represent this functor, the following conditions must hold.

o W is an object in C and w : A — F(W) is a morphism in D.
o For an object X in C, we have a bijection

W.(X)=C(W,X) = D(A,F(X)) = FA(X) given by f +— F(f)ow

If H:D — Cis aleft adjoint to F, and ug : A — FHA is the unit at the object
A of D, we see that (HA,u4) co-represents the functor F4.

We thus see that representable/co-representable functors are a way to interpret
right /left adjoints “object-wise”.
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