
Revisiting Yoneda Lemma
Given a category C, we defined the functor A· from Copp to Set as follows:

• A·(X) = C(X,A) for an object X in C.
• A·(f)(a) = a ◦ f giving A·(f) : A·(Y )→ A·(X) for a morphism f : X → Y

in C.

Similarly, we defined the functor A· from C to Set as follows:

• A·(X) = C(A,X) for an object X in C.
• A·(f)(a) = f ◦a giving A·(f) : A·(X)→ A·(Y ) for a morphism f : X → Y

in C.

Representability and Co-representability

If F is a functor from Copp to Set, note that for an element a ∈ A·(X) = C(X,A),
we get a set map F (a) : F (A)→ F (X). Thus, we get a pairing

F (A)×A·(X)→ F (X) given by (α, a) 7→ F (a)(α)

Fixing α ∈ F (A), this allows us to define, for each object X, a map α̃X :
A·(X)→ F (X) given by a 7→ F (a)(α). We see easily that this gives a natural
transformation α̃ : A· → F . Conversely, given a natural transformation η : A· →
F , we can define α as the image of 1A under ηA : A·(A)→ F (A) and check that
η = α̃.

In summary, we have an natural identification between elements α ∈ F (A) and
natural transformations α̃ : A· → F . This is the Yoneda lemma for contravariant
functors F .

We say that F is represented by (A,α) if this natural transformation is an
isomorphism of functors; equivalently, this means that α̃X : C(X,A)→ F (X) is
a bijection for each object X in C.

Similarly, given a functor F from C to Set we have a pairing

F (A)×A·(X)→ F (X) given by (α, a) 7→ F (a)(α)

since a ∈ A·(X) = C(A,X) gives a set map F (a) : F (A)→ F (X). By repeating
the argument above with minor modifications we see that this gives a natural
identification between elements α ∈ F (A) and natural transformations α̃ : A· →
F . This is the Yoneda lemma for (covariant) functors F .

We say that F is co-represented by (A,α) if this natural transformation is an
isomorphism of functors; equivalently, this means that α̃X : C(A,X)→ F (X) is
a bijection for each object X in C.

Universals represent functors

We will now see that universal objects can be seen as representing and co-
representing functors.
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To begin this discussion consider the functor U that sends every object of C to
the singleton set {·} and every morphism in C to the identity map 1{·} of this
singleton set. Note that this is also a functor from Copp to Set.

What can we say about representability and co-representability of U?

If (A,α) represents U , then α = · is the unique element of U(A) = {·} and for
every object X in C, this gives a bijection α̃ : C(X,A) → U(X) = {·}. This
means that there is a unique morphism X → A for every object X in C. In other
words,

If A represents the singleton functor U , then A is a final object in C.

Similarly, if (B, β) co-represents U , then β unique element of U(B) = {·} and
for every objection X in C, this gives a bijection β̃ : C(B,X) → U(X) = {·}.
This means that there is a unique morphism B → X for every object X in C. In
other words,

If B co-represents the singleton functor U , then B is an initial object
in C.

Products and Limits of Schemas
Given a category C, we saw that a diagram D in C based on a directed graph
Γ is described precisely by a functor FD : PΓ → C, where PΓ is the category
where objects are vertices in Γ and morphisms are directed paths in Γ.

More generally, given a (small) category I, we define an I-schema in C to be a
functor F : I → C.

Given an object X in C, we denote by ∆X the functor from I to C which sends
every object of I to X and every morphism in I to the identity morphism 1X .
Note that this makes sense independent of the category I, so we use the same
notation ∆X without worrying about the category I.

We noted that a morphism from X to the diagram D is described precisely by a
natural transformation χ : ∆X → FD. Similarly, a morphism from the diagram
D to Z is precisely a natural transformation ξ : FD → ∆Z. We then looked
at the category of pairs (X,χ). A final object in this category, if it exists, is
precisely the product

∏
D. Similarly, if there is an initial object in the category

of pairs (Z, ξ), it is the co-product
∐
D.

More generally, we can consider the category of pairs (X,χ) where χ : ∆X → F
is a natural transformation of functors I to C where morphisms (X,χ)→ (Y, η)
are morphisms f : X → Y in C that yield commutative diagrams

∆X ∆Y

F F

∆f

χ η
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where ∆f : ∆X → ∆Y is the natural transformation that associates f to every
object of I. In other words, we require η ◦∆f = χ for f : X → Y to yield a
morphism (X,χ)→ (Y, η).

We then define the product (
∏
I F, π) of the I-schema F in C as the final object

in this category, if it exists.

Similar, we consider the category of pairs (Z, ξ) where ξ : F → ∆Z is a natural
transformation of functors I to C, where morphisms (Z, ξ)→ (W,ω) are given
by morphisms f : Z →W such that (∆f) ◦ ξ = ω.

We then define the co-product (
∐
I F, ι) of the I-schema F in C as the initial

object in this category, if it exists.

We now exhibit these in terms of representation and co-representation of functors.

Functors associated with Schemas

Given a I-scheme F in C. (Note that this is another name for a functor F from
I to C!)

We define a functor F from Copp to Set as follows:

• Given an object X in C we associate the set F (X) whose elements are
natural transformations χ : ∆X → F .

• Given a morphism f : X → Y in C, we associate the set map F (Y )→ F (X)
given by η 7→ η ◦∆f .

If (A,α) represents the functor F , then α : ∆A→ F is a natural transformation
such that the for every object X in C,

f → α ◦∆f gives a bijection A·(X) = C(X,A)→ F (X)

Put differently, given a χ : ∆X → F , there is a unique f : X → A such that
χ = α ◦ ∆f . This is precisely the same as saying that (A,α) is the product
(
∏
I F, π).

Similarly, we define a functor F from C to Set as follows:

• Given an object Z in C we associate the set F (Z) whose elements are
natural transformations ξ : F → ∆Z.

• Given a morphism f : Z →W in C, we associate the set map F (Z)→ F (W )
given by ξ 7→ (∆f) ◦ ξ.

If (B, β) co-represents the functor F , then β : F → ∆B is a natural transforma-
tion such that the for every object Z in C,

f → (∆f) ◦ β gives a bijection B·(X) = C(B,Z)→ F (Z)

Put differently, given a ξ : F → ∆Z, there is a unique f : B → Z such that
ξ = (∆f) ◦ β. This is precisely the same as saying that (B, β) is the co-product
(
∐
I F, ι).
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Adjoint functors and representability
Given a functor F : C → D and an object A in D, we ask for the representability
of the functor FA from Copp to Set defined as follows:

• For an object X of C we define FA(X) = D(F (X), A).
• For a morphism f : X → Y in CD we define

FA(Y ) = D(F (Y ), A)→ D(F (X), A) = FA(X) given by a 7→ a ◦ F (f)

Note that F can also be seen as a functor Copp to Dopp in an obvious way; let us
denote this functor as F ′. We then check that FA is the composite functor A·F ′.

For (Z, z) to represent this functor, the following conditions must hold.

• Z is an object in C and z : F (Z)→ A is a morphism in D.
• For an object X in C, we have a bijection

Z ·(X) = C(X,Z)→ D(F (X), A) = FA(X) given by f 7→ z ◦ F (f)

If G : D → C is a right adjoint to F , and vA : FGA→ A is the co-unit at the
object A of D, we see that (GA, vA) represents the functor FA.

Similarly, we can define the functor FA from C to Set as follows:

• For an object X of C we define FA(X) = D(A,F (X)).
• For a morphism f : X → Y in CD we define

FA(X) = D(A,F (X))→ D(A,F (Y )) = FA(Y ) given by a 7→ F (f) ◦ a

We can check that FA = A·F is the composite functor.

For (W,w) to co-represent this functor, the following conditions must hold.

• W is an object in C and w : A→ F (W ) is a morphism in D.
• For an object X in C, we have a bijection

W·(X) = C(W,X)→ D(A,F (X)) = FA(X) given by f 7→ F (f) ◦ w

If H : D → C is a left adjoint to F , and uA : A→ FHA is the unit at the object
A of D, we see that (HA, uA) co-represents the functor FA.

We thus see that representable/co-representable functors are a way to interpret
right/left adjoints “object-wise”.

4


	Revisiting Yoneda Lemma
	Representability and Co-representability
	Universals represent functors
	Products and Limits of Schemas
	Functors associated with Schemas

	Adjoint functors and representability


