Diagrams, products and co-products

A diagram D in a category \mathcal{C} is a directed graph where the vertices are objects of \mathcal{C} and the arrows are morphisms of \mathcal{C}. For example:

- The empty diagram \emptyset has no morphisms.
- Given a collection S of objects we can take the diagram S which consists of these objects as vertices and no arrows/morphisms.
- Given two morphisms $f, g: A \rightarrow B$, we have at least four diagrams possible

Note that we allow a single object to appear as multiple vertices in D and a single morphism to appear as multiple arrows in D.

Products

One question we can ask is whether there is an object X in \mathcal{C} that maps to the diagram D in the following sense.

- For each vertex v of D, if A_{v} is the associated object, we have a morphism $x_{v}: X \rightarrow A_{v}$.
- For each (directed) edge e from the vertex v to the vertex w of D, if $f_{e}: A_{v} \rightarrow A_{w}$ is the associated morphism, we have $x_{w}=f_{e} \circ x_{v}$.

We can think of the collection $\left(x_{v}\right)_{v \in D}$ as:
A cone of arrows emerging from X and ending at vertices in D such that the triangles formed by these arrows with arrows of D commute.

We denote such a collection by $\left(X,\left(x_{v}\right)_{v \in D}\right)$.
We can further ask is whether there is a "largest" such collection $\left(\prod D,\left(p_{v}\right)_{v \in D}\right)$ in the following sense:

- $\left(\prod D,\left(p_{v}\right)_{v \in D}\right)$ maps to the diagram D in the above sense.
- If $\left(X,\left(x_{v}\right)_{v \in D}\right)$ maps to the diagram D in the above sense, then there is a unique morphism $x: X \rightarrow \prod D$ such that $x_{v}=p_{v} \circ x$.
When such a $\left(\prod D,\left(p_{v}\right)_{v \in D}\right)$ exists, we say that $\left(\prod D,\left(p_{v}\right)_{v \in D}\right)$ is the product of the diagram D.

Co-products

We can reverse all arrows in this description to obtain the notion of co-product of the diagram D.

We first ask if there is an object Z in \mathcal{C} to which the diagram D maps in the following sense:

- For each vertex v of D, if A_{v} is the associated object, we have a morphism $z^{v}: A_{v} \rightarrow Z$.
- For each (directed) edge e from the vertex v to the vertex w of D, if $f_{e}: A_{v} \rightarrow A_{w}$ is the associated morphism, we have $z^{v}=z^{w} \circ f_{e}$.

We can think of the collection $\left(z^{v}\right)_{v \in D}$ as:
A cone of arrows emerging from vertices in D and ending at Z such that the triangles formed by these arrows with arrows of D commute.
We can then ask whether there is a "smallest" such collection ($\left.\coprod D,\left(c^{v}\right)_{v \in D}\right)$ in the following sense:

- The diagram D maps to ($\left.\coprod D,\left(c^{v}\right)_{v \in D}\right)$ in the above sense.
- If the diagram D maps to Z in the above sense then there is a unique morphism $z: \coprod D \rightarrow Z$ such that $z^{v}=z \circ c^{A}$.

When such a ($\left\lfloor D,\left(c^{v}\right)_{v \in D}\right)$ exists, we say that $\left(\amalg D,\left(c^{v}\right)_{v \in D}\right)$ is the co-product of the diagram D.

Examples

We now look at some examples of diagrams and associated products and coproducts.

Posets

Let P be a poset considered as a category. Two objects of P are comparable if and only if there is a morphism from one to the other and such a morphism is unique and has a unique direction.

It follows easily that, for the purposes of calculating products and co-products, giving a diagram D in P is the same as giving its collection S of vertices; the morphisms are irrelevant.

Further, we see that the product is the infimum or "greatest lower bound" of S and the co-product is the supremum or least upper bound of S.

Initial and Final objects

When $D=\emptyset$ there are no conditions.
So what we are asking is whether is an object $\Pi \emptyset$ such that given an object A in \mathcal{C}, there is a unique morphism $A \rightarrow \prod \emptyset$.
If such an object exists we usually denote it as 1 or $1_{\mathcal{C}}$ instead of $\prod \emptyset$ and call it a final object of the category \mathcal{C}.

We say 1 is a final object of \mathcal{C} if, for every object A of \mathcal{C}, there is a unique morphism $A \rightarrow 1$.
Similarly, if the co-product $\coprod \emptyset$ exists, we denote it by 0 or $0_{\mathcal{C}}$ and call it an initial object of the category \mathcal{C}.

We say 0 is a final object of \mathcal{C} if, for every object A of \mathcal{C}, there is a unique morphism $0 \rightarrow A$.

Note that the unique morphism $1 \rightarrow 1$ has to be the identity morphism 1_{1}. It follows easily that if 1^{\prime} is also a final object, then the unique morphisms $1^{\prime} \rightarrow 1$ and $1 \rightarrow 1^{\prime}$ as above are inverses of each other.

The final object, if it exists, is unique upto a unique isomorphism.
Similarly:
The initial object, if it exists, is unique upto a unique isomorphism.
We also similarly conclude that any morphism $1 \rightarrow A$ has $A \rightarrow 1$ as a retraction, and any morphism $A \rightarrow 0$ has $0 \rightarrow A$ as a section.

Diagram with two isolated vertices

Next, we examine the case where $D=\{v, w\}$ consists of two vertices associated with objects A_{v} and A_{w} (which may be the same!).

In this case, for the product, we are asking for objects X with morphisms $x_{v}: X \rightarrow A_{v}$ and $x_{w}: X \rightarrow A_{w}$. (Even if A_{v} and A_{w} are the same object in \mathcal{C}, we can have different morphisms x_{v} and x_{w} !) There is no further condition on x_{v} or x_{w}.
The product if it exists in this case is denoted as $A_{v} \times A_{w}$. If so, have two morphisms $p_{v}: A_{v} \times A_{w} \rightarrow A_{v}$ and $p_{w}: A_{v} \times A_{w} \rightarrow A_{w}$. Moreover, given $\left(X, x_{v}, x_{w}\right)$ as above, there is a morphism $x: X \rightarrow A_{v} \times A_{w}$ such that $x_{v}=p_{v} \circ x$ and $x_{w}=p_{w} \circ x$.
Similarly, for the co-product, we are asking for objects Z with morphisms $z^{v}: A_{v} \rightarrow Z$ and $z^{w}: A_{w} \rightarrow Z$. There is no further condition on z^{v} or z^{w}.

The co-product if it exists in this case is denoted as $A_{v} \coprod A_{w}$. If so, have two morphisms $i^{v}: A_{v} \rightarrow A_{v} \coprod A_{w}$ and $i^{w}: A_{w} \rightarrow A_{v} \amalg A_{w}$. Moreover, given
$\left(Z, z^{v}, z^{w}\right)$ as above, there is a morphism $z: A_{v} \coprod A_{w} \rightarrow Z$ such that $z^{v}=z \circ i^{v}$ and $z^{w}=z \circ i^{w}$.

The notation $A_{v} \times A_{w}$ and $A_{v} \coprod A_{w}$ comes from the category of sets, where the product is the product of sets and the co-product is the disjoint union.

Note that, in terms of the functors A from $\mathcal{C}^{\text {opp }}$ to Set we have

$$
A_{v}(X) \times A_{w}^{\prime}(X)=\left(A_{v} \times A_{w}\right)^{\cdot}(X)
$$

for every object X in \mathcal{C}. This can be seen as another definition of the product.

Equalizer and co-equalizer

Given a pair $f, g: A \rightarrow B$ of morphisms in \mathcal{C} we consider the diagram D with two vertices and two arrows:

The product $\prod D$ is called the equalizer of f and g.
More directly, we are looking for morphisms $x_{A}: X \rightarrow A$ such that $f \circ x_{A}=g \circ x_{A}$.
The equaliser $E(f=g)$ has a morphism $e: E(f=g) \rightarrow A$ such that $f \circ e=g \circ e$. Moreover, given $\left(X, x_{A}\right)$ as above, there is a unique morphism $x: X \rightarrow E(f=g)$ such that $x_{A}=e \circ x$.

If \mathcal{C} is the category of sets, then f and g are set maps and the equaliser is the subset $\{a \in A \mid f(a)=g(a)\}$ of A.
In the category Grp of groups, the equaliser of two homomorphisms $f, g: G \rightarrow K$ is the subgroup H of G where these two homomorphisms become equal. In particular, if $g=e$ is the homomorphism which maps every element of G to the identity element of K, then the equaliser is the kernel of f. Thus, we see that the notion of equaliser generalises the notion of kernels of homomorphisms of groups.

Daully, the co-product $\coprod D$ of the diagram above is called the co-equalizer of f and g.

We are looking for morphisms $z^{B}: B \rightarrow Z$ such that $z^{B} \circ f=z^{C} \circ g$.
The co-equaliser $C(f=g)$ has a morphism $c: B \rightarrow C(f=g)$ such that $c \circ f=c \circ g$. Moreover, given $\left(Z, z^{B}\right)$ as above, there is a unique morphism $z: C(f=g) \rightarrow Z$ such that $z^{B}=z \circ c$.
In the category $\mathbf{A b}$ of Abelian groups, co-equaliser of homomorphisms $f, g: A \rightarrow$ B is precisely the cokernel of $f-g$. Thus, the notion of co-equaliser generalises the notion of cokernels of homomorphisms of abelian groups.

Fibre products

Given morphisms $f: B \rightarrow A$ and $g: C \rightarrow A$, we consider the diagram D with three vertices and two arrows:

The product $\prod D$ is called the fibre product of f and g and is denoted as $B \times{ }_{A} C$ (or sometimes $B{ }_{f} \times{ }_{g} C$ in order to make the morphisms f and g explicit).
We are asking for and object X and morphisms $x_{B}: X \rightarrow B$ and $x_{C}: X \rightarrow C$ such that $f \circ x_{B}=g \circ x_{C}$.

The fibre product $B \times_{A} C$ has such morphisms $q_{B}: B \times_{A} C \rightarrow B$ and q_{C} : $B \times{ }_{A} C \rightarrow C$. Moreover, given $\left(X, x_{B}, x_{C}\right)$ as above, there is a unique morphism $x: X \rightarrow B \times_{A} C$ such that $x_{B}=q_{B} \circ x$ and $x_{C}=q_{C} \circ x$.
In the category Set, we see that

$$
B \times_{A} C=\{(b, c) \mid f(b)=g(c)\}
$$

is a subset of $B \times C$. In fact, it is the equaliser of $f \circ p_{B}$ and $g \circ p_{C}$ where $p_{B}: B \times C \rightarrow B$ and $p_{C}: B \times C \rightarrow C$ are the natural projections.
More generally, if the product $B \times C$ is defined in a category \mathcal{C}, then the equaliser of $f \circ p_{B}$ and $g \circ p_{C}$ is precisely the fibre product of f and g as defined above.
If the category \mathcal{C} has a final object 1 , we note that there is a unique morphism from any object to 1 . It follows easily that that $B \times C=B \times{ }_{1} C$.

Joins or Amalgams

By dualising the notion of fibre products, we get the notion of joins or amalgams of B and C along $f: A \rightarrow B$ and $g: A \rightarrow C$.
We are looking for objects Z with morphisms $z^{B}: B \rightarrow Z$ and $z^{C}: C \rightarrow X$ such that $z^{B} \circ f=z^{C} \circ g$ as morphisms $A \rightarrow X$.

The join $B *_{A} C$ is such an object with morphisms $j^{B}: B \rightarrow B *_{A} C$ and $j^{C}: C \rightarrow B *_{A} C$. Moreover, givem $\left(Z, z^{B}, z^{C}\right)$ as above, there is a unique morphism $z: B *_{A} C \rightarrow Z$ such that $z^{B}=z \circ j^{B}$ and $z^{C}=z \circ j^{C}$.
In the category Set of sets, $B *_{A} C$ can be seen as the quotient of the disjoint union $B \amalg C$ obtained by identifying b and c if there is an a such that $f(a)=b$ and $g(a)=c$.

If the category \mathcal{C} has an initial object 0 , then one can see that $A \coprod B$ is the amalgam $A *_{0} B$ of the natural morphisms $0 \rightarrow A$ and $0 \rightarrow B$.

By dualising the statements of the previous section regarding products, equalisers and fibre products, we se that if the category \mathcal{C} has co-products and equalisers then it has amalgams.

