
Diagrams, products and co-products
A diagram D in a category C is a directed graph where the vertices are objects
of C and the arrows are morphisms of C. For example:

• The empty diagram ∅ has no morphisms.
• Given a collection S of objects we can take the diagram S which consists

of these objects as vertices and no arrows/morphisms.
• Given two morphisms f, g : A→ B, we have at least four diagrams possible

A B

f

g

;

A

B

A
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B

A
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g

f
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A B

A B

f

g

Note that we allow a single object to appear as multiple vertices in D and a
single morphism to appear as multiple arrows in D.

Products

One question we can ask is whether there is an object X in C that maps to the
diagram D in the following sense.

• For each vertex v of D, if Av is the associated object, we have a morphism
xv : X → Av.

• For each (directed) edge e from the vertex v to the vertex w of D, if
fe : Av → Aw is the associated morphism, we have xw = fe ◦ xv.

X

A B

xv xw

fe

We can think of the collection (xv)v∈D as:

A cone of arrows emerging from X and ending at vertices in D such
that the triangles formed by these arrows with arrows of D commute.

We denote such a collection by (X, (xv)v∈D).

We can further ask is whether there is a “largest” such collection (
∏

D, (pv)v∈D)
in the following sense:

• (
∏

D, (pv)v∈D) maps to the diagram D in the above sense.
• If (X, (xv)v∈D) maps to the diagram D in the above sense, then there is a

unique morphism x : X →
∏

D such that xv = pv ◦ x.

When such a (
∏

D, (pv)v∈D) exists, we say that (
∏

D, (pv)v∈D) is the product
of the diagram D.
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Co-products

We can reverse all arrows in this description to obtain the notion of co-product
of the diagram D.

We first ask if there is an object Z in C to which the diagram D maps in the
following sense:

• For each vertex v of D, if Av is the associated object, we have a morphism
zv : Av → Z.

• For each (directed) edge e from the vertex v to the vertex w of D, if
fe : Av → Aw is the associated morphism, we have zv = zw ◦ fe.

A B

Z

fe

zv zw

We can think of the collection (zv)v∈D as:

A cone of arrows emerging from vertices in D and ending at Z such
that the triangles formed by these arrows with arrows of D commute.

We can then ask whether there is a “smallest” such collection (
∐

D, (cv)v∈D) in
the following sense:

• The diagram D maps to (
∐

D, (cv)v∈D) in the above sense.
• If the diagram D maps to Z in the above sense then there is a unique

morphism z :
∐

D → Z such that zv = z ◦ cA.

When such a (
∐

D, (cv)v∈D) exists, we say that (
∐

D, (cv)v∈D) is the co-product
of the diagram D.

Examples
We now look at some examples of diagrams and associated products and co-
products.

Posets

Let P be a poset considered as a category. Two objects of P are comparable if
and only if there is a morphism from one to the other and such a morphism is
unique and has a unique direction.

It follows easily that, for the purposes of calculating products and co-products,
giving a diagram D in P is the same as giving its collection S of vertices; the
morphisms are irrelevant.

Further, we see that the product is the infimum or “greatest lower bound” of S
and the co-product is the supremum or least upper bound of S.
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Initial and Final objects

When D = ∅ there are no conditions.

So what we are asking is whether is an object
∏
∅ such that given an object A

in C, there is a unique morphism A→
∏
∅.

If such an object exists we usually denote it as 1 or 1C instead of
∏
∅ and call it

a final object of the category C.

We say 1 is a final object of C if, for every object A of C, there is a
unique morphism A→ 1.

Similarly, if the co-product
∐
∅ exists, we denote it by 0 or 0C and call it an

initial object of the category C.

We say 0 is a final object of C if, for every object A of C, there is a
unique morphism 0→ A.

Note that the unique morphism 1→ 1 has to be the identity morphism 11. It
follows easily that if 1′ is also a final object, then the unique morphisms 1′ → 1
and 1→ 1′ as above are inverses of each other.

The final object, if it exists, is unique upto a unique isomorphism.

Similarly:

The initial object, if it exists, is unique upto a unique isomorphism.

We also similarly conclude that any morphism 1→ A has A→ 1 as a retraction,
and any morphism A→ 0 has 0→ A as a section.

Diagram with two isolated vertices

Next, we examine the case where D = {v, w} consists of two vertices associated
with objects Av and Aw (which may be the same!).

In this case, for the product, we are asking for objects X with morphisms
xv : X → Av and xw : X → Aw. (Even if Av and Aw are the same object in C,
we can have different morphisms xv and xw!) There is no further condition on
xv or xw.

The product if it exists in this case is denoted as Av × Aw. If so, have two
morphisms pv : Av × Aw → Av and pw : Av × Aw → Aw. Moreover, given
(X, xv, xw) as above, there is a morphism x : X → Av×Aw such that xv = pv ◦x
and xw = pw ◦ x.

Similarly, for the co-product, we are asking for objects Z with morphisms
zv : Av → Z and zw : Aw → Z. There is no further condition on zv or zw.

The co-product if it exists in this case is denoted as Av

∐
Aw. If so, have two

morphisms iv : Av → Av

∐
Aw and iw : Aw → Av

∐
Aw. Moreover, given
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(Z, zv, zw) as above, there is a morphism z : Av

∐
Aw → Z such that zv = z ◦ iv

and zw = z ◦ iw.

The notation Av ×Aw and Av

∐
Aw comes from the category of sets, where the

product is the product of sets and the co-product is the disjoint union.

Note that, in terms of the functors A· from Copp to Set we have

A·v(X)×A·w(X) = (Av ×Aw)·(X)

for every object X in C. This can be seen as another definition of the product.

Equalizer and co-equalizer

Given a pair f, g : A→ B of morphisms in C we consider the diagram D with
two vertices and two arrows:

v w

d

e

which is represented by A B

f

g

The product
∏

D is called the equalizer of f and g.

More directly, we are looking for morphisms xA : X → A such that f ◦xA = g◦xA.

The equaliser E(f = g) has a morphism e : E(f = g)→ A such that f ◦ e = g ◦ e.
Moreover, given (X, xA) as above, there is a unique morphism x : X → E(f = g)
such that xA = e ◦ x.

If C is the category of sets, then f and g are set maps and the equaliser is the
subset {a ∈ A|f(a) = g(a)} of A.

In the category Grp of groups, the equaliser of two homomorphisms f, g : G→ K
is the subgroup H of G where these two homomorphisms become equal. In
particular, if g = e is the homomorphism which maps every element of G to the
identity element of K, then the equaliser is the kernel of f . Thus, we see that
the notion of equaliser generalises the notion of kernels of homomorphisms of
groups.

Daully, the co-product
∐

D of the diagram above is called the co-equalizer of f
and g.

We are looking for morphisms zB : B → Z such that zB ◦ f = zC ◦ g.

The co-equaliser C(f = g) has a morphism c : B → C(f = g) such that
c ◦ f = c ◦ g. Moreover, given (Z, zB) as above, there is a unique morphism
z : C(f = g)→ Z such that zB = z ◦ c.

In the category Ab of Abelian groups, co-equaliser of homomorphisms f, g : A→
B is precisely the cokernel of f − g. Thus, the notion of co-equaliser generalises
the notion of cokernels of homomorphisms of abelian groups.

4



Fibre products

Given morphisms f : B → A and g : C → A, we consider the diagram D with
three vertices and two arrows:

v

u

w

d

e

which is represented by

B

A

C

f

g

The product
∏

D is called the fibre product of f and g and is denoted as B×A C
(or sometimes B f×g C in order to make the morphisms f and g explicit).

We are asking for and object X and morphisms xB : X → B and xC : X → C
such that f ◦ xB = g ◦ xC .

The fibre product B ×A C has such morphisms qB : B ×A C → B and qC :
B×A C → C. Moreover, given (X, xB , xC) as above, there is a unique morphism
x : X → B ×A C such that xB = qB ◦ x and xC = qC ◦ x.

In the category Set, we see that

B ×A C = {(b, c)|f(b) = g(c)}

is a subset of B × C. In fact, it is the equaliser of f ◦ pB and g ◦ pC where
pB : B × C → B and pC : B × C → C are the natural projections.

More generally, if the product B×C is defined in a category C, then the equaliser
of f ◦ pB and g ◦ pC is precisely the fibre product of f and g as defined above.

If the category C has a final object 1, we note that there is a unique morphism
from any object to 1. It follows easily that that B × C = B ×1 C.

Joins or Amalgams

By dualising the notion of fibre products, we get the notion of joins or amalgams
of B and C along f : A→ B and g : A→ C.

We are looking for objects Z with morphisms zB : B → Z and zC : C → X such
that zB ◦ f = zC ◦ g as morphisms A→ X.

The join B ∗A C is such an object with morphisms jB : B → B ∗A C and
jC : C → B ∗A C. Moreover, givem (Z, zB , zC) as above, there is a unique
morphism z : B ∗A C → Z such that zB = z ◦ jB and zC = z ◦ jC .

In the category Set of sets, B ∗A C can be seen as the quotient of the disjoint
union B

∐
C obtained by identifying b and c if there is an a such that f(a) = b

and g(a) = c.
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If the category C has an initial object 0, then one can see that A
∐

B is the
amalgam A ∗0 B of the natural morphisms 0→ A and 0→ B.

By dualising the statements of the previous section regarding products, equalisers
and fibre products, we se that if the category C has co-products and equalisers
then it has amalgams.
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