Quiz 3: Adjunction

Question: Given the functor G from \mathcal{D} to \mathcal{C} as follows, describe the left adjoint functor F.

The category \mathcal{D} has objects as positive integers and morphisms are from n to nk for positive integers n and k.

The category C has objects as positive rational numbers and morphisms are from r to rk for a positive rational r and a positive integer k.

The functor G associates to a positive integer n, the same number considered as a rational number n and to a morphism $n \to nk$ in \mathcal{D} , the morphism $n \to nk$ in \mathcal{C} .

Answer: There is a morphism $r \to n = Gn$ in \mathcal{D} if and only if n = rk for some positive integer k.

We need the equality C(r, Gn) = D(Fr, n). Both of these are either singleton sets or empty sets.

Thus, given a rational number r we want Fr to be a positive integer such that if n is another other positive integer, then n = (Fr)k' if and only if n = rk for some positive integers k' and k.

Writing r = p/q where gcd(p,q) = 1 and p and q are positive integers, we see that rk = pk/q is an integer if and only of k = qk' is a multiple of q. It follows that Fr = p = rq solves the problem.

We note that the natural transformation $r \to GFr$ is the one given by $r \to rq = p$. The natural transformation $n = FGn \to n = n \cdot 1$ is the identity map.