Quiz 3: Adjunction

Question: Given the functor G from \mathcal{D} to \mathcal{C} as follows, describe the left adjoint functor F.

The category \mathcal{D} has objects as positive integers and morphisms are from n to $n k$ for positive integers n and k.

The category \mathcal{C} has objects as positive rational numbers and morphisms are from r to $r k$ for a positive rational r and a positive integer k.

The functor G associates to a positive integer n, the same number considered as a rational number n and to a morphism $n \rightarrow n k$ in \mathcal{D}, the morphism $n \rightarrow n k$ in \mathcal{C}.

Answer: There is a morphism $r \rightarrow n=G n$ in \mathcal{D} if and only if $n=r k$ for some positive integer k.

We need the equality $\mathcal{C}(r, G n)=\mathcal{D}(F r, n)$. Both of these are either singleton sets or empty sets.

Thus, given a rational number r we want $F r$ to be a positive integer such that if n is another other positive integer, then $n=(F r) k^{\prime}$ if and only if $n=r k$ for some positive integers k^{\prime} and k.

Writing $r=p / q$ where $\operatorname{gcd}(p, q)=1$ and p and q are positive integers, we see that $r k=p k / q$ is an integer if and only of $k=q k^{\prime}$ is a multiple of q. It follows that $F r=p=r q$ solves the problem.

We note that the natural transformation $r \rightarrow G F r$ is the one given by $r \rightarrow r q=p$. The natural transformation $n=F G n \rightarrow n=n \cdot 1$ is the identity map.

