Representable functors and Yoneda Lemma

Given an object A in a category C, we can think of morphisms $b: X \to A$ as "generalised elements of A of type X", or more simply "X-points of A". This way of thinking allows us to think about objects as "made up of elements" in a manner similar to how we work with set-theoretical mathematical objects.

When morphisms between pairs A, B, of objects in C form a set C(A, B), this leads us to associate to A, the functor A^{\cdot} from C^{opp} to **Set** given as follows:

- Given an object X, we associate the set $A^{\cdot}(X) = \mathcal{C}(X, A)$.
- Given a morphism $f: X \to Y$, we associate the set map

$$A^{\cdot}(f): A^{\cdot}(Y) = \mathcal{C}(Y, A) \to \mathcal{C}(X, A) = A^{\cdot}(X)$$

given by $(y: Y \to A) \mapsto (y \circ f: X \to A)$

The fact that this is a functor follows from the identity and associativity of morphisms in \mathcal{C} .

In the rest of this section we will work with a category C in which morphisms between pairs A, B of objects form a set C(A, B).

Representable functors

Given a functor F from \mathcal{C}^{opp} to **Set** we can ask whether it is possible to detect that it is of the form A^{\cdot} for some object A of \mathcal{C} .

To do so we must characterise natural transformations for such functors.

Elements of F(A) as natural transformations

Given a morphism $x : X \to A$ in \mathcal{C} , the functoriality of F gives a set map $F(x) : F(A) \to F(X)$.

Thus, for every element α of F(A) we get an element $F(x)(\alpha)$ of F(X). In other words, we have a set map

 $F(A) \times A^{\odot}(X) \to F(X)$ given by $(\alpha, x) \mapsto F(x)(\alpha)$

Given an element α of F(A) and an element x of $A^{\cdot}(X)$, we get an element $F(x)(\alpha)$ of F(X).

We can thus define a set map $\alpha_X : A^{\cdot}(X) \to F(X)$ by $\alpha_X(x) = F(x)(\alpha)$.

(Note that a set map $X \times Y \to Z$, can be thought of as a map from $X \to Map(Y,Z)$ or a map from $Y \to Map(X,Z)$.)

Given a morphism $f: Y \to X$ in \mathcal{C} , we note that $F(x \circ f) = F(f) \circ F(x)$ since

F is contravariant. This gives

$$(\alpha_Y \circ A^{\cdot}(f))(x) = \alpha_Y (A^{\cdot}(f)(x))$$

= $\alpha_Y (x \circ f) = F(x \circ f)(\alpha)$
= $(F(f) \circ F(x))(\alpha) = F(f)(F(x)(\alpha))$
= $F(f)(\alpha_X(x)) = (F(f) \circ \alpha_X)(x)$

This shows that the following diagram commutes

$$\begin{array}{ccc} A^{\cdot}(X) & \stackrel{\alpha_{X}}{\longrightarrow} & F(X) \\ & & \downarrow^{A^{\cdot}(f)} & \downarrow^{F(f)} \\ A^{\cdot}(Y) & \stackrel{\alpha_{Y}}{\longrightarrow} & F(Y) \end{array}$$

Thus, we have shown that an element $\alpha \in F(A)$ gives a natural transformation $A^{\cdot} \to F$ of functors \mathcal{C}^{opp} to **Set**.

Natural Transormations as elements of F(A)

For a natural transformation $\eta:A^{\cdot}\rightarrow F$ we have:

- For each object X of C a set map $\eta_A : A^{\cdot}(X) \to F(X)$.
- For each morphism $f:Y\to X$ of ${\mathcal C}$ a commutative diagram

$$\begin{array}{ccc} A^{\cdot}(X) & \stackrel{\eta_X}{\longrightarrow} F(X) \\ & \downarrow^{A^{\cdot}(f)} & \downarrow^{F(f)} \\ A^{\cdot}(Y) & \stackrel{\eta_Y}{\longrightarrow} F(Y) \end{array}$$

Let us define α as the image of the identity map 1_A as an element of $A^{\cdot}(A) = \mathcal{C}(A, A)$.

Given an object Y of \mathcal{Y} and an element of $y \in A^{\cdot}(Y) = \mathcal{C}(X, A)$, we apply the above diagram to the morphism $y: Y \to A$ to get

$$\begin{array}{ccc} A^{\cdot}(A) & \xrightarrow{\eta_{X}} & F(A) \\ & & \downarrow^{A^{\cdot}(y)} & \downarrow^{F(y)} \\ A^{\cdot}(Y) & \xrightarrow{\eta_{Y}} & F(Y) \end{array}$$

Let us calculate the image of 1_A in $A^{\cdot}(A)$ under both sides. We note that its image under the top arrow is α by definition. Hence, via one route we get $F(y)(\alpha)$.

On the other hand, the image of 1_A under A'(y) is $1_A \circ y = y$. Thus, via the other route, we get $\eta_Y(y)$.

By comparing with the definition of α_Y given in the previous subsection, we get $\eta_Y(y) = \alpha_Y(y)$. Since this is for an *arbitrary* choice of Y and y, we see that $\eta_Y = \alpha_Y$.

Combining these two sections we obtain a natural identification between elements of F(A) and natural transformations $A^{\cdot} \to F$. This is the statement of Yoneda Lemma.

Definition

Given a functor F from \mathcal{C}^{opp} to **Set**, an object A of \mathcal{C} and an element α in F(A), we say that (A, α) represents the functor F if the natural transformation $\alpha : A \to F$ as given by Yoneda Lemma is an isomorphism of functors.

Since, for each object X in C, we have a set map $\alpha_X : A^{\cdot}(X) \to F(X)$, this is the same as asking that this set map is a bijection of sets.