
Monad of Groups
In this section we will demonstrate a monad F the “creates” the theory of groups
as F -algbras.

Recall that a monad (F, u,m) on Set is:

• A functor F from Set to itself.
• A natural transformation u : 1Set → F .
• A natural transformation m : FF → F .
• The following diagram commutes:

F FF

FF F

uF

1FF (u) m

m

• The following diagram commutes:

FFF FF

FF F

F (m)

mF m

m

Recall that an M -algebra is a set H with a map µ : M(H)→ H which satisfies:

• µ ◦ uH : H → H is the identity map.
• µ ◦ F (mH) = µ ◦ F (µ) as set maps FF (H)→ H.

The free group functor F

To a set S we associate the set F (S) whose elements are (conceptually) products
of variables (ga)a∈S and their inverses. In other words, an element w of F (S)
has the form

w = gn1
a1
· · · gnr

ar

where ai are elements of S and ni ∈ Z are integers. To avoid redundancy, we
require that ai is different from ai+1 and do not allow ni = 0. Finally, we allow
r = 0; this corresponds to the empty product which we denote as e. We call
such elements w of F (S) “words” in the “group generators” S.

Given a more general word with possible redundancy (i.e. where we allow
ai = ai+1), we can shrink the the word by combining gna gma to gm+n

a . When
m+ n = 0 we drop this term entirely. Each such step reduces the length of the
expression and we denote this operation by ρ(w) and call the result the reduced
word.

Given a set map f : S → T , we get a set map F (f) : F (S)→ F (T ) by defining

F (f)(w) = F (f)(gn1
a1
· · · gnr

ar
) = ρ

(
gn1
f(a1) · · · g

nr

f(ar)

)
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Note that the reduction ρ is used since f(ai) could be equal to f(ai+1).

One easily checks that F defines a functor from Set to itself.

The natural transformations u and m

We define uS : S → F (S) by a 7→ ga. It is clear that this gives a natural
transformation 1Set → F .

An element of FF (S) can be written in the form gn1
w1
· · · gnr

wr
where ni are non-zero

integers and wi ∈ F (S) are words such that wi 6= wi+1.

Under the map mS : FF (S)→M(S)

mS : gn1
w1
· · · gnr

wr
7→ ρ (wn1

1 · · ·wnr
r )

Note that when wi is the empty word, it is dropped (actually, it does not appear!)
from the expression above as part of the reduction. This remark is necessary
since ge is could occur as gwi for some i.

One can check the commutative diagrams which show that (F, u,m) is a monad
(but it will not be done in these notes and left as an exercise for the reader).

F -algebras
Given a morphism µ : F (H) → H together with the commudative diagrams
which make this an F -alebgra, we wish to show that H becomes a group in a
natural way so that the map µ is given by

µ : gn1
a1
· · · gnr

ar
7→ an1

1 � · · · � anr
r

where:

• for a in H and n an integer, an is the n-th power of the group element
a ∈ H, and

• for a and b in H, a� b represents the product of these elements in H.

To prove this, we first define the various components of the proposed group
structure on H as follows.

• The element µ(e) is denoted by 1 and will be shown to be the identity
element of H.

• The element µ(g2
a) is denoted by a�a and will be shown to be the product

of a with itself in H.
• When a, b are different, the element µ(gagb) is denoted by a� b and will

be shown to be the product in H.
• The element µ(g−1

a ) is denoted by ι(a) and will be shown to be the inverse
of the element a in H.
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The identity µ(ga) = a

The first condition for F -algebras says that µ(uH(a)) = a. Since uH(a) = ga,
we see that we obtain µ(ga) = a as required.

In particular, we note that µ(g1) = 1 = µ(e) and µ(gι(a)) = ι(a) = µ(g−1
a ).

Similarly, we see that µ(ga�b) = a � b = µ(gagb). Thus, the map µ can take
different elements in F (H) to the same element in H.

A formula

Before going further, let us compute F (µ) : FF (H)→ F (H).

F (µ) : gn1
w1
· · · gnr

wr
7→ ρ

(
gn1
µ(w1) · · · g

nr

µ(wr)

)
Now using the identity µ ◦ F (µ) = µ ◦mH and the computation of mH above
we see that

µ (ρ (wn1
1 · · ·wnr

r )) = µ
(
ρ

(
gn1
µ(w1) · · · g

nr

µ(wr)

))
for all choices of wi and ni as above.

The element 1 is identity for �

We apply the above identity with w1 = ga and w2 = e to get

µ (ρ (gae)) = µ
(
ρ

(
gµ(ga)gµ(e)

))
Now the left-hand side simplifies to µ(ga) = a, while the right-hand side simplifies
to µ(gag1) = a� 1. This shows that a = a� 1.

Similarly, if we take w1 = e and w2 = ga, we get a = 1� a.

The element ι(a) is the inverse of a

We apply the above identity with w1 = ga and w2 = g−1
a to get

µ
(
ρ

(
gag
−1
a

))
= µ

(
ρ

(
gµ(ga)gµ(g−1

a )

))
Now the left-hand side simplifies to µ(e) = 1, while the right-hand side simplifies
to µ(gagι(a)) = a� ι(a). This shows that 1 = a� ι(a).

Similarly, if we take w1 = g−1
a and w2 = ga, we get 1 = ι(a)� a.

Associativity

We apply the above identity with w1 = ga and w2 = gbgc to get

µ (ρ (gagbgc)) = µ
(
ρ

(
gµ(ga)gµ(gbgc)

))
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Now the left-hand side simplifies to µ(gagbgc), while the right-hand side simplifies
to µ(gagb�c) = a� (b� c). This shows that a� (b� c) = µ(gagbgc)

Similarly, if we take w1 = gagb and w2 = gc, we get (a � b) � c = µ(gagbgc).
Combining these identities gives (a� b)� c = a� (b� c) as required.

It follows that H is a group with the above operations. The computation of µ in
terms of the group operation also follows rather easily after that.
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