Monad of Groups

In this section we will demonstrate a monad F' the “creates” the theory of groups
as F-algbras.

Recall that a monad (F,u,m) on Set is:

e A functor F from Set to itself.

¢ A natural transformation u : 1get — F'.
¢ A natural transformation m : F'F' — F.
e The following diagram commutes:

F - FF
F(u)lxxtm
FF ™3 F

e The following diagram commutes:

rrr 2 pp

|me |m

FF ——— F

Recall that an M-algebra is a set H with a map p : M (H) — H which satisfies:

e poug : H— H is the identity map.
o poF(myg)=poF(u) as set maps FF(H) — H.

The free group functor F

To a set S we associate the set F'(S) whose elements are (conceptually) products
of variables (g4)qcs and their inverses. In other words, an element w of F'(S)
has the form
W= Ga) " Ga)

where a; are elements of S and n; € Z are integers. To avoid redundancy, we
require that a; is different from a;+; and do not allow n; = 0. Finally, we allow
r = 0; this corresponds to the empty product which we denote as e. We call
such elements w of F(S) “words” in the “group generators” S.

Given a more general word with possible redundancy (i.e. where we allow
a; = a;y1), we can shrink the the word by combining g7g™ to g”*t™. When
m +n = 0 we drop this term entirely. Each such step reduces the length of the
expression and we denote this operation by p(w) and call the result the reduced

word.

Given a set map f: S — T, we get a set map F(f): F(S) — F(T) by defining

F(£)(w) = FN@5 - 0i) = 0 (950 i)



Note that the reduction p is used since f(a;) could be equal to f(a;t1).
One easily checks that F' defines a functor from Set to itself.

The natural transformations v and m

We define ug : S — F(S) by a — go. It is clear that this gives a natural
transformation lget — F.

An element of F'F'(S) can be written in the form g;1 - - - g;i* where n; are non-zero
integers and w; € F(S) are words such that w; # w;41.

Under the map mg : FF(S) — M(S)

ms : Goy -+ Gu > p (W w)T)
Note that when w; is the empty word, it is dropped (actually, it does not appear!)
from the expression above as part of the reduction. This remark is necessary
since g, is could occur as g, for some 4.

One can check the commutative diagrams which show that (F,u,m) is a monad
(but it will not be done in these notes and left as an exercise for the reader).

F-algebras

Given a morphism p : F(H) — H together with the commudative diagrams
which make this an F-alebgra, we wish to show that H becomes a group in a
natural way so that the map u is given by

B gat o gar e ayt @ Oay”

where:

e for @ in H and n an integer, a™ is the n-th power of the group element
a € H, and
e for a and b in H, a ® b represents the product of these elements in H.

To prove this, we first define the various components of the proposed group
structure on H as follows.

e The element p(e) is denoted by 1 and will be shown to be the identity
element of H.

o The element 1(g2) is denoted by a ® a and will be shown to be the product
of @ with itself in H.

e When a, b are different, the element p(gqgs) is denoted by a ® b and will
be shown to be the product in H.

e The element (g, ') is denoted by t(a) and will be shown to be the inverse
of the element a in H.



The identity p©(g,) = a

The first condition for F-algebras says that u(ug(a)) = a. Since ug(a) = gq,
we see that we obtain u(g,) = a as required.

In particular, we note that 1(g1) = 1 = p(e) and p(g.)) = tla) = pulgz?).
Similarly, we see that u(geeps) = @ © b = p(gagp). Thus, the map p can take
different elements in F(H) to the same element in H.

A formula

Before going further, let us compute F(u) : FF(H) — F(H).
F(u) : gy - Gur, = P (gZ(lwl) . -gZ(wr))

Now using the identity o F(u) = pompyg and the computation of my above
we see that

wp it wr) = (p (90 9 ))

for all choices of w; and n; as above.

The element 1 is identity for ©
We apply the above identity with w; = g, and ws = e to get

1(p(9a€)) = 1 (p (Gu(ga)Iu(e)))

Now the left-hand side simplifies to p(g,) = a, while the right-hand side simplifies
to 1(gag1) = a ® 1. This shows that a = a ® 1.

Similarly, if we take w; = e and wy = g,, we get a =1 © a.

The element :(a) is the inverse of a

We apply the above identity with w; = g, and ws = g, ! to get

1 (p (9092 ")) = m (p (gu(ga>9u(g;1)))

Now the left-hand side simplifies to p(e) = 1, while the right-hand side simplifies
to 1(gagu(a)) = a © t(a). This shows that 1 =a © i(a).

Similarly, if we take w; = g; ! and wy = g,, we get 1 = 1(a) ® a.

Associativity

We apply the above identity with wy = g, and ws = gpg. to get

1 (p (9gagvgc)) = 1 (p (gu(ga)gu(gbgc)))



Now the left-hand side simplifies to p(gagsge), while the right-hand side simplifies
to 11(gagbee) = a @ (b ® ¢). This shows that a ® (b ® ¢) = p(gagsge)

Similarly, if we take w; = gogp and we = g, we get (a ©®b) ® ¢ = p(gagge)-
Combining these identities gives (a ©®b) © ¢ =a ® (b ® ¢) as required.

It follows that H is a group with the above operations. The computation of u in
terms of the group operation also follows rather easily after that.
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