Quiz 2: Categories of Functors

Question: Given the categories C and D as follows, describe the category Fun(C, D) of functors.

The category \mathcal{C} has one object and morphisms are given by non-negative integers with composition as addition.

The category \mathcal{D} has one object and morphisms are given by positive integers with composition as multiplication.

Answer: We first compute the functors from \mathcal{C} to \mathcal{D} . Each such functor takes the object to itself and takes the morphism 0 in \mathcal{C} to the morphism 1 in \mathcal{D} (since a functor takes the identity to the identity). Suppose the morphism 1 in \mathcal{C} is taken to the morphism k in \mathcal{D} for some positive integer k. Then, one proves by induction that the morphism n of \mathcal{C} goes to the morphism k^n in \mathcal{D} .

Thus the objects in $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ can be identified with positive integers k where the functor corresponding to k takes the morphism n in \mathcal{C} to the morphism k^n in \mathcal{D} . Let us denote the functor associate with k as F_k so that $F_k(n) = k^n$.

A natural transformation $r_{k,k'}: F_k \to F_{k'}$ associates to the unique object of \mathcal{D} a morphism r in \mathcal{D} which satifies a certain commutative diagram. This diagram says for every morphism n in \mathcal{C} , we have $r \circ F_k(n) = F_{k'}(n) \circ r$. This gives the identity $r \cdot k^n = k'^n \cdot r$ for every non-negative integer n.

There are two cases to consider. When k = k' we get this identity for every positive integer r.

When $k \neq k'$, then the above identity *cannot* hold for n = 1 and a positive integer r.

Thus, the only morphisms are $r_{k,k}: F_k \to F_k$ for every positive integer r.

In other words, the category consists of one object F_k for each positive integer k, and one morphism $r_{k,k}: F_k \to F_k$ for each pair (r, k) of positive integers.