Quiz 2: Categories of Functors

Question: Given the categories \mathcal{C} and \mathcal{D} as follows, describe the category $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ of functors.
The category \mathcal{C} has one object and morphisms are given by non-negative integers with composition as addition.

The category \mathcal{D} has one object and morphisms are given by positive integers with composition as multiplication.

Answer: We first compute the functors from \mathcal{C} to \mathcal{D}. Each such functor takes the object to itself and takes the morphism 0 in \mathcal{C} to the morphism 1 in \mathcal{D} (since a functor takes the identity to the identity). Suppose the morphism 1 in \mathcal{C} is taken to the morphism k in \mathcal{D} for some positive integer k. Then, one proves by induction that the morphism n of \mathcal{C} goes to the morphism k^{n} in \mathcal{D}.

Thus the objects in $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ can be identified with positive integers k where the functor corresponding to k takes the morphism n in \mathcal{C} to the morphism k^{n} in \mathcal{D}. Let us denote the functor associate with k as F_{k} so that $F_{k}(n)=k^{n}$.

A natural transformation $r_{k, k^{\prime}}: F_{k} \rightarrow F_{k^{\prime}}$ associates to the unique object of \mathcal{D} a morphism r in \mathcal{D} which satifies a certain commutative diagram. This diagram says for every morphism n in \mathcal{C}, we have $r \circ F_{k}(n)=F_{k^{\prime}}(n) \circ r$. This gives the identity $r \cdot k^{n}=k^{\prime n} \cdot r$ for every non-negative integer n.

There are two cases to consider. When $k=k^{\prime}$ we get this identity for every positive integer r.
When $k \neq k^{\prime}$, then the above identity cannot hold for $n=1$ and a positive integer r.

Thus, the only morphisms are $r_{k, k}: F_{k} \rightarrow F_{k}$ for every positive integer r.
In other words, the category consists of one object F_{k} for each positive integer k, and one morphism $r_{k, k}: F_{k} \rightarrow F_{k}$ for each pair (r, k) of positive integers.

