Monads

Monads occur whenever there are adjoint functors. Thus, they are an important construction in category theory.

Concepts

Recall the definition of adjoint functors.

- There are categories \mathcal{C} and \mathcal{D}
- There are functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$. The functor F is the left adjoint of the functor G, which is the the right adjoint of F.
- There is a natural transformation $u: 1_{\mathcal{C}} \rightarrow G F$, called the unit of the adjunction.
- There is a natural transformation $v: F G \rightarrow 1_{\mathcal{D}}$, called the counit of the adjunction
- We have $1_{F}=v_{F} \circ F(u)$ and $1_{G}=G(v) \circ u_{G}$.
- The maps $g \mapsto g^{u}=G(g) \circ u_{A}$ and its inverse $f \mapsto f_{v}=v_{B} \circ F(f)$ provide a natural identification between $\mathcal{D}(A, G(B))$ and $\mathcal{C}(G(A), B)$.

In many of the examples of adjoint functors, we saw that $G F$ is a functor from Set to itself which was of a special kind, so we and look at its properties in the light of what is given above.

- \mathcal{C} is a category
- $G F: \mathcal{C} \rightarrow \mathcal{C}$ is a functor.
- $u: 1_{\mathcal{C}} \rightarrow G F$ is a natural transofrmation
- We have a natural transformation $G\left(v_{F}\right): G F G F \rightarrow G F$ such that the following diagram commutes

- We also have other commutative diagrams. For example, the following diagram follows from the identity $1_{G(B)}=G\left(v_{B}\right) \circ u_{G(B)}$, by substituting $B=F(A)$.

This suggests the following definition of a monad M.

- We have a category \mathcal{C}.
- We have a functor M from \mathcal{C} to itself.
- We have a natural transformation $u: 1_{\mathcal{C}} \rightarrow M$. This is called the "identity" or "unit" of the monad.
- We have a natural transformation $m: M M \rightarrow M$. This is called the "multiplication" or "operation" of the monad.
- We have the commutative diagram (which is like saying that u is the identity for the multiplication m)

- We have the commutative diagram (which is like saying that m is associative)

Monads from adjoint functors of forgetful functors to Set

We look at the monads that we have already constructed in the the situation where the category is Set.

In the first case, by factoring through monads, we associate to a set S, the underlying set associated with the free monad $M(S)=S^{*}$. We have already constructed the morphisms $u: S \rightarrow S^{*}$ given by $s \mapsto(s)$ and $m: M\left(S^{*}\right) \rightarrow S^{*}$ which sends a tuple of tuples to the concatenation of these tuples.

$$
\begin{aligned}
&\left(\left(a_{1}, \ldots, a_{p}\right),\left(b_{1}, \ldots, b_{q}\right), \ldots,\left(c_{1}, \ldots, c_{r}\right)\right) \\
& \mapsto\left(a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}, \ldots, c_{1}, \ldots, c_{r}\right)
\end{aligned}
$$

In the second case, we factor through Abelian groups. We associate to a set S, the underlying set of the free Abelian group $\langle S\rangle$ whose basis (over \mathbb{Z}) is given by $\left\{e_{s}\right\}_{s \in S}$. We have already seen that the map $S \rightarrow\langle S\rangle$ is given by $s \mapsto e_{s}$. The map $m:\langle\langle S\rangle\rangle \rightarrow\langle S\rangle$ is given by sending, for each $a \in\langle S\rangle$, the element e_{a} in $\langle\langle S\rangle\rangle$ to the element a. Since $\langle\langle S\rangle\rangle$ is generated freely by e_{a}, this determines m.

A similar construction can be carried out when we factor through commutative rings. We will examine this case a little differently below.

Abelianisation

We also studied the example where G is the forgetful functor from $\mathbf{A b}$ to $\mathbf{G r p}$ and F is the functor from Grp which associates to a group K, the Abelian group $K^{\mathrm{ab}}=K /[K, K]$.

In this case, the functor $M=G F$ from Grp to itself, which associates to a group K, the group $K^{\text {ab }}$. The natural transformation u is the homomorphism $K \rightarrow K /[K, K]=K^{\mathrm{ab}}=M K$. For an Abelian group A, we have $A=A^{\mathrm{ab}}$ so $M M K=M K=K^{\mathrm{ab}}$ so the natural tranformation $m: M M \rightarrow M$ is the identity homomorphism.

One easily checks the commutativity of the required diagrams.

Power Set functor

We have a functor P from Set to itself that associates to a set S, the power set $P(S)$ that parametrises subsets of S. Note that if $f: S \rightarrow T$ is a set map, the associated set map $P(f): P(S) \rightarrow P(T)$ is the map that takes a subset R of S to its image $f(R)$ in T. One easily checks that this is a functor.
There is a natural transformation u given by $u_{S}: S \rightarrow P(S)$ that takes an element s of S to the singleton set $\{s\}$ which is an element of $P(S)$. A subset T of $P(S)$ gives an indexed collection $\left\{R_{t}\right\}_{t \in T}$ of subsets R_{t} of S for each t. We define $m(T)=\cup_{t \in T} R_{t}$ which is the union of the R_{t} as subsets of S. This defines a set map $m_{S}: P(P(S)) \rightarrow P(S)$ which we check is a natural transformation $m: P P \rightarrow P$

One then checks the commutativity of the required diagrams.

Algebraic structures and Monads

In each of the cases of monads associated with forgetful functors above, there is a natural category through which M "factors". To what extent is this true in general?

Given a monad M on a category \mathcal{C}, we define an algebra of type M to be an object A of \mathcal{C} with a morphism $e: M(A) \rightarrow A$ such that the following diagrams commute:

- The identity of M leads to identity on A.

- The operation of A is associative in the sense of M

Polynomial monad and commutative rings

Let us see what this means for the monad C which associates to a set S the underlying set of the ring $\mathbb{Z}[S]$ of plynomials in variables x_{s} for s in S.

The map $u_{S}: S \rightarrow \mathbb{Z}[S]$ sends an element s to the variable x_{s}. This plays the role of "identity" for the monad C as it gives a morphism $u_{S}: S \rightarrow C(S)$.

When R is a commutative ring, and $f: T \rightarrow R$ is a set map, we have a homomorphism $\mathbb{Z}[T] \rightarrow R$ which sends which sends the variable x_{t} to $f(t)$ for every t in T. If $p \in \mathbb{Z}[T]$ is a polynomial in the variables $\left(x_{t}\right)_{t \in T}$, then its image in R can be seen as the result of evaluating the polynomial p by substituting x_{t} by $f(t)$ for each element $t \in T$.

Applying this to $R=\mathbb{Z}[S]$ and the identity map $1_{R}: R \rightarrow R$, we get a map $m_{S}: \mathbb{Z}[\mathbb{Z}[S]] \rightarrow \mathbb{Z}[S]$. The ring $\mathbb{Z}[\mathbb{Z}[S]]$ is the collection of polynomials q in the variables x_{p} where p varies over polynomials in the variables $\left(x_{s}\right)_{s \in S}$. Under the $\operatorname{map} m_{S}$, we send q to the polynomial obtained when we substitute x_{p} by p.

This gives the multiplication map $m_{S}: C C(S) \rightarrow C(S)$. With the natural transformations u_{S} and m_{S}, one checks that C becomes a monad.

A C-algebra (or an algebra of type C) comprises have a set A with a set map $e: C(A) \rightarrow A$ which satisfiy some identities (or commutative diagrams).

Note that $C(A)=\mathbb{Z}[A]$ is the polynomial ring in the variables x_{a} for elements a in A. So for every polynomial p in the variables $\left(x_{a}\right)_{a \in A}$, we have an element $e(p)$ in A. In particular, we can define some natural elements and operations for A as follows.

- The element $0 \in A$ as the image $e(0)$ of the 0 polynomial.
- The element $1 \in A$ as the image $e(1)$ of the 0 polynomial.
- Given $a, b \in A$ we define $a+b$ as the image $e\left(x_{a}+x_{b}\right)$ of the polynomial $x_{a}+x_{b}$.
- Given $a, b \in A$ we define $a \cdot b$ as the image $e\left(x_{a} x_{b}\right)$ of the polynomial $x_{a} x_{b}$.
- Given $a \in A$ we define $-a$ (the additive inverse of a) as the image $e\left(-x_{a}\right)$ of the polynomial $-x_{a}$.

First of all, we can apply e to the polynomial which is just the single variable x_{a} for $a \in A$. Note that $x_{a}=u_{A}(a)$ as seen above. The "identity" property for the monad says that $e\left(u_{A}(a)\right)=a$ which means that $e\left(x_{a}\right)=a$ as expected! In particular, we note that $e\left(x_{0}\right)=0, e\left(x_{1}\right)=1$ and so on.

The map $m_{A}: C C(A) \rightarrow C(A)$ takes a polynomial q in the variables $\left(x_{p}\right)_{p \in C(A)}$ to the polynomial $m_{A}(q)$ in the variables $\left(x_{a}\right)_{a \in A}$ obtained from q by substituting x_{p} by p.

On the other hand, we see that the map $C(e): C C(A) \rightarrow C(A)$ takes a polynomial q in the variables $\left(x_{p}\right)_{p \in C(A)}$ to $C(e)(q)$ which is obtained from q by substituting x_{p} by $x_{e(p)}$.

The second diagram for the C-algbra A says that $e\left(m_{A}(q)\right)=e(C(e)(q))$ for every q. This will lead to various required identities.

- Since $x_{a}+x_{b}=x_{b}+x_{a}$ and $x_{a} \cdot x_{b}=x_{b} \cdot x_{a}$ in $C(A)$ we see that $a+b=b+a$ and $a \cdot b=b \cdot a$ as these are defined to be the images under e of the above polynomials.
- Consider the polynomial $q=x_{x_{a}}+x_{0}$ where x_{a} and 0 are considered as elements of $C(A)$. Under m_{A} the image of q is $x_{a}+0=x_{a}$, so $e\left(m_{A}((q))=a\right.$. On the other hand $C(e)(q)=x_{a}+x_{0}$ since $e\left(x_{a}\right)=a$ and $e\left(x_{0}\right)=0$, so $e(C(e)(q))=e\left(x_{a}+x_{0}\right)=a+0$. Thus, the above identity says that $a=a+0$.
- Similarly, consider $q=x_{x_{a}} x_{1}$, where x_{a} and 1 are considered as elements of $C(A)$. Its image under m_{A} is $x_{a} \cdot 1=x_{a}$ while its image under $C(e)$ is $x_{a} \cdot x_{1}$ in $C(A)$. The images of these two in A must be equal which shows that $a \cdot 1=a$.
- We now consider $q=x_{x_{a}}+x_{-x_{a}}$. Its image under m_{A} is $x_{a}-x_{a}=0$ and its image under $C(e)$ is $x_{a}+x_{-a}$. Hence, we obtain the identity $a+(-a)=0$.
- Consider $q=x_{x_{a}}+x_{x_{b}+x_{c}}$, where x_{a} and $x_{b}+x_{c}$ are considered as elements of $C(A)$. Its image under m_{A} is $x_{a}+x_{b}+x_{c}$ while its image under $C(e)$ is $x_{a}+x_{b+c}$. It follows that the images of these under e are equal, giving us the identity $e\left(x_{a}+x_{b}+x_{c}\right)=a+(b+c)$. Since this is true for all a, b, c we see that $a+(b+c)=c+(a+b)=(a+b)+c$, where the last identity is due to commutativity of addition which was proved above.
- Similarly, consider $q=x_{x_{a}} x_{x_{b} x_{c}}$, where x_{a} and $x_{b} x_{c}$ are considered as elements of $C(A)$. Its image under m_{A} is $x_{a} x_{b} x_{c}$ while its image under $C(e)$ is $x_{a} x_{b \cdot c}$. As above, taking images under e we obtain the identity $e\left(x_{a} x_{b} x_{c}\right)=a \cdot(b \cdot c)$ for a, b and c. We then get the identity $a \cdot(b \cdot c)=$ $c \cdot(a \cdot b)=(a \cdot b) \cdot c$ by also using commutativity of multiplication which was proved above.
- Finally, consider $q=x_{x_{a} x_{b}}+x_{x_{a} x_{c}}$. Its image under m_{A} is $x_{a} x_{b}+x_{a} x_{c}=$ $x_{a}\left(x_{b}+x_{c}\right)$, while its image under $C(e)$ is $x_{a \cdot b}+x_{a \cdot c \cdot}$. Taking images under e, we obtain the identity $e\left(x_{a}\left(x_{b}+x_{c}\right)\right)=a \cdot b+a \cdot c$. At the same time, we see that if $q=x_{x_{a}} x_{x_{b}+x_{c}}$, then $m_{A}(q)=x_{a}\left(x_{b}+x_{c}\right)$ and $C(e)(q)=x_{a} x_{b+c}$; applying e gives the identity $e\left(x_{a}\left(x_{b}+x_{c}\right)\right)=a \cdot(b+c)$. Combining these gives $a \cdot b+a \cdot c=a \cdot(b+c)$.

In conclusion, we see that if A is an algebra of type C, then A is a commutative ring in a natural way and $e: C(A) \rightarrow A$ is the map that takes a polynomial p in the variables $\left(x_{a}\right)_{a \in A}$ to the result of substituting x_{a} by a in p.

