
Monads
Monads occur whenever there are adjoint functors. Thus, they are an important
construction in category theory.

Concepts
Recall the definition of adjoint functors.

• There are categories C and D
• There are functors F : C → D and G : D → C. The functor F is the left

adjoint of the functor G, which is the the right adjoint of F .
• There is a natural transformation u : 1C → GF , called the unit of the

adjunction.
• There is a natural transformation v : FG→ 1D, called the counit of the

adjunction
• We have 1F = vF ◦ F (u) and 1G = G(v) ◦ uG.
• The maps g 7→ gu = G(g) ◦ uA and its inverse f 7→ fv = vB ◦F (f) provide

a natural identification between D(A, G(B)) and C(G(A), B).

In many of the examples of adjoint functors, we saw that GF is a functor from
Set to itself which was of a special kind, so we and look at its properties in the
light of what is given above.

• C is a category
• GF : C → C is a functor.
• u : 1C → GF is a natural transofrmation
• We have a natural transformation G(vF ) : GFGF → GF such that the

following diagram commutes

GF (A) GFGF (A)

GF (A)

GF (uA)

1GF (A)
G(vF (A))

• We also have other commutative diagrams. For example, the following
diagram follows from the identity 1G(B) = G(vB) ◦ uG(B), by substituting
B = F (A).

GF (A) GFGF (A)

GF (A)

uGF (A)

1GF (A)
G(vF (A))

This suggests the following definition of a monad M .

• We have a category C.
• We have a functor M from C to itself.
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• We have a natural transformation u : 1C →M . This is called the “identity”
or “unit” of the monad.

• We have a natural transformation m : MM → M . This is called the
“multiplication” or “operation” of the monad.

• We have the commutative diagram (which is like saying that u is the
identity for the multiplication m)

M(A) MM(A)

MM(A) M(A)

uM(A)

1M(A)
M(uA) m

m

• We have the commutative diagram (which is like saying that m is associa-
tive)

MMM(A) MM(A)

MM(A) M(A)

M(mA)

mM(A) mA

m

Monads from adjoint functors of forgetful functors to Set

We look at the monads that we have already constructed in the the situation
where the category is Set.

In the first case, by factoring through monads, we associate to a set S, the
underlying set associated with the free monad M(S) = S∗. We have already
constructed the morphisms u : S → S∗ given by s 7→ (s) and m : M(S∗)→ S∗

which sends a tuple of tuples to the concatenation of these tuples.

((a1, . . . , ap) , (b1, . . . , bq) , . . . , (c1, . . . , cr))
7→ (a1, . . . , ap, b1, . . . , bq, . . . , c1, . . . , cr)

In the second case, we factor through Abelian groups. We associate to a set S,
the underlying set of the free Abelian group 〈S〉 whose basis (over Z) is given by
{es}s∈S . We have already seen that the map S → 〈S〉 is given by s 7→ es. The
map m : 〈〈S〉〉 → 〈S〉 is given by sending, for each a ∈ 〈S〉, the element ea in
〈〈S〉〉 to the element a. Since 〈〈S〉〉 is generated freely by ea, this determines m.

A similar construction can be carried out when we factor through commutative
rings. We will examine this case a little differently below.

Abelianisation

We also studied the example where G is the forgetful functor from Ab to Grp
and F is the functor from Grp which associates to a group K, the Abelian
group Kab = K/[K, K].
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In this case, the functor M = GF from Grp to itself, which associates to a
group K, the group Kab. The natural transformation u is the homomorphism
K → K/[K, K] = Kab = MK. For an Abelian group A, we have A = Aab

so MMK = MK = Kab so the natural tranformation m : MM → M is the
identity homomorphism.

One easily checks the commutativity of the required diagrams.

Power Set functor

We have a functor P from Set to itself that associates to a set S, the power set
P (S) that parametrises subsets of S. Note that if f : S → T is a set map, the
associated set map P (f) : P (S)→ P (T ) is the map that takes a subset R of S
to its image f(R) in T . One easily checks that this is a functor.

There is a natural transformation u given by uS : S → P (S) that takes an
element s of S to the singleton set {s} which is an element of P (S). A subset T
of P (S) gives an indexed collection {Rt}t∈T of subsets Rt of S for each t. We
define m(T ) = ∪t∈T Rt which is the union of the Rt as subsets of S. This defines
a set map mS : P (P (S)) → P (S) which we check is a natural transformation
m : PP → P

One then checks the commutativity of the required diagrams.

Algebraic structures and Monads
In each of the cases of monads associated with forgetful functors above, there is
a natural category through which M “factors”. To what extent is this true in
general?

Given a monad M on a category C, we define an algebra of type M to be an
object A of C with a morphism e : M(A)→ A such that the following diagrams
commute:

• The identity of M leads to identity on A.

A M(A)

A

uA

1A
e

• The operation of A is associative in the sense of M

MM(A) M(A)

M(A) A

M(e)

mA e

e
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Polynomial monad and commutative rings

Let us see what this means for the monad C which associates to a set S the
underlying set of the ring Z[S] of plynomials in variables xs for s in S.

The map uS : S → Z[S] sends an element s to the variable xs. This plays the
role of “identity” for the monad C as it gives a morphism uS : S → C(S).

When R is a commutative ring, and f : T → R is a set map, we have a
homomorphism Z[T ]→ R which sends which sends the variable xt to f(t) for
every t in T . If p ∈ Z[T ] is a polynomial in the variables (xt)t∈T , then its image
in R can be seen as the result of evaluating the polynomial p by substituting xt

by f(t) for each element t ∈ T .

Applying this to R = Z[S] and the identity map 1R : R → R, we get a map
mS : Z [Z[S]]→ Z[S]. The ring Z [Z[S]] is the collection of polynomials q in the
variables xp where p varies over polynomials in the variables (xs)s∈S . Under the
map mS , we send q to the polynomial obtained when we substitute xp by p.

This gives the multiplication map mS : CC(S) → C(S). With the natural
transformations uS and mS , one checks that C becomes a monad.

A C-algebra (or an algebra of type C) comprises have a set A with a set map
e : C(A)→ A which satisfiy some identities (or commutative diagrams).

Note that C(A) = Z[A] is the polynomial ring in the variables xa for elements a
in A. So for every polynomial p in the variables (xa)a∈A, we have an element
e(p) in A. In particular, we can define some natural elements and operations for
A as follows.

• The element 0 ∈ A as the image e(0) of the 0 polynomial.
• The element 1 ∈ A as the image e(1) of the 0 polynomial.
• Given a, b ∈ A we define a + b as the image e(xa + xb) of the polynomial

xa + xb.
• Given a, b ∈ A we define a · b as the image e(xaxb) of the polynomial xaxb.
• Given a ∈ A we define −a (the additive inverse of a) as the image e(−xa)

of the polynomial −xa.

First of all, we can apply e to the polynomial which is just the single variable
xa for a ∈ A. Note that xa = uA(a) as seen above. The “identity” property for
the monad says that e(uA(a)) = a which means that e(xa) = a as expected! In
particular, we note that e(x0) = 0, e(x1) = 1 and so on.

The map mA : CC(A)→ C(A) takes a polynomial q in the variables (xp)p∈C(A)
to the polynomial mA(q) in the variables (xa)a∈A obtained from q by substituting
xp by p.

On the other hand, we see that the map C(e) : CC(A) → C(A) takes a
polynomial q in the variables (xp)p∈C(A) to C(e)(q) which is obtained from q by
substituting xp by xe(p).
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The second diagram for the C-algbra A says that e(mA(q)) = e(C(e)(q)) for
every q. This will lead to various required identities.

• Since xa +xb = xb +xa and xa ·xb = xb ·xa in C(A) we see that a+b = b+a
and a · b = b · a as these are defined to be the images under e of the above
polynomials.

• Consider the polynomial q = xxa
+ x0 where xa and 0 are considered

as elements of C(A). Under mA the image of q is xa + 0 = xa, so
e(mA((q)) = a. On the other hand C(e)(q) = xa + x0 since e(xa) = a and
e(x0) = 0, so e(C(e)(q)) = e(xa + x0) = a + 0. Thus, the above identity
says that a = a + 0.

• Similarly, consider q = xxa
x1, where xa and 1 are considered as elements

of C(A). Its image under mA is xa · 1 = xa while its image under C(e) is
xa · x1 in C(A). The images of these two in A must be equal which shows
that a · 1 = a.

• We now consider q = xxa +x−xa . Its image under mA is xa−xa = 0 and its
image under C(e) is xa + x−a. Hence, we obtain the identity a + (−a) = 0.

• Consider q = xxa
+xxb+xc

, where xa and xb +xc are considered as elements
of C(A). Its image under mA is xa + xb + xc while its image under C(e)
is xa + xb+c. It follows that the images of these under e are equal, giving
us the identity e(xa + xb + xc) = a + (b + c). Since this is true for all a, b,
c we see that a + (b + c) = c + (a + b) = (a + b) + c, where the last identity
is due to commutativity of addition which was proved above.

• Similarly, consider q = xxa
xxbxc

, where xa and xbxc are considered as
elements of C(A). Its image under mA is xaxbxc while its image under
C(e) is xaxb·c. As above, taking images under e we obtain the identity
e(xaxbxc) = a · (b · c) for a, b and c. We then get the identity a · (b · c) =
c · (a · b) = (a · b) · c by also using commutativity of multiplication which
was proved above.

• Finally, consider q = xxaxb
+ xxaxc

. Its image under mA is xaxb + xaxc =
xa(xb + xc), while its image under C(e) is xa·b + xa·c. Taking images under
e, we obtain the identity e(xa(xb + xc)) = a · b + a · c. At the same time, we
see that if q = xxa

xxb+xc
, then mA(q) = xa(xb +xc) and C(e)(q) = xaxb+c;

applying e gives the identity e(xa(xb + xc)) = a · (b + c). Combining these
gives a · b + a · c = a · (b + c).

In conclusion, we see that if A is an algebra of type C, then A is a commutative
ring in a natural way and e : C(A)→ A is the map that takes a polynomial p in
the variables (xa)a∈A to the result of substituting xa by a in p.
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