
Adjoint functors
Adjoint functors occur in many places. We will see the definitions and some
examples.

Concepts
A functor F from C to D is said to be a left adjoint of a functor G from D to C
(equivalently, G is said to be a right adjoint of F ), if there is a “natural” identi-
fication, for every object A of C and every object B of D, between C(A, G(B))
and D(F (A), B).

The question of what we mean by “natural” identification remains!

Note that such an identification can, in particular, be applied in the case B =
F (A). This gives an identification between D(F (A), F (A)) and C(A, GF (A)),
where GF denotes the composite functor from C to itself. Now, D(F (A), F (A))
contains a special element 1F (A) and this suggests that there is a special element
uA : A→ GF (A).

In other words, we should expect a natural transformation u from the identity
functor on C to the functor GF .

Given such a natural transformation, and a morphism g : F (A) → B, we can
form the composite morphism

A GF (A) G(B)uA

G(g)◦uA

G(g)

It would thus seem that we should define gu = G(g) ◦ uA so that

D(F (A), B)→ C(A, G(B)) given by g 7→ gu

should give the required identification. Note that so far we have not shown that
this map of sets is one-to-one and onto.

If we expect it to be onto, then for each object B and the case A = G(B), there
should be a morphism vB in C(FG(B), B) such that 1G(B) = (vB)u. In other
words, we should have a natural transformation vB : FG(B)→ B such that

1G(B) = G(vB) ◦ uG(B)

which can be seen as a commutative diagram of natural transformations

G(B) GFG(B)

G(B)

uG(B)

1G(B)
G(vB)

1



Given a morphism f : A→ G(B), we can now form the composite morphism

F (A) FG(B) B
F (f)

vB◦F (f)

vB

and so, we have

C(A, G(B))→ C(F (A), B) given by f 7→ fv = vB ◦ F (f)

We want this map to be the inverse of the map given above in order to complete
the natural identification.

Note that 1u
F (A) = G(1F (A)) ◦ uA = 1GF (A) ◦ uA = uA. Thus, we require the

transposed identity
1F (A) = (uA)v = vF (A) ◦ F (uA)

This can be seen as a commutative diagram of natural transformations

F (A) FGF (A)

F (A)

F (uA)

1F (A)
vF (A)

Definition

A pair (F, G) of adjoint functors between categories C and D can be characterised
as follows.

• There is a natural transformation u : 1C → GF , called the unit of the
adjunction.

• There is a natural transformation v : FG→ 1D, called the counit of the
adjunction

• We have 1F = vF ◦ F (u) and 1G = G(v) ◦ uG corresponding the the above
commutative diagrams.

• The maps g 7→ gu = G(g) ◦ uA and its inverse f 7→ fv = vB ◦F (f) provide
a natural identification between D(A, G(B)) and C(G(A), B).

Free Monoid

Given a set S, we treat it as an “alphabet” and let S∗ be the collection of all
finite “strings” in this alphabet. In other words, elements of S∗ can be identified
as the union of the sets of n-tuples of elements of S for all n ≥ 0. (Note that
n = 0 represents the empty string.)

Strings can be concatenated. This operation is associative and the empty string
plays the role of identity. Hence, we see that S∗ is a monoid. It is often called
the free monoid generated by S.

2



The assignment of S∗ to S gives a functor F from Set to Mon, where the latter
is the category of monoids. This is easily checked.

We also have the forgetful functor G from Mon to Set which associates to each
monoid its underlying set and to a homomorphism of monoids associates the
underlying set map.

Note that GF (S) = S∗ considered merely as a set rather than as a monoid.
There is a natural set map uS : S → S∗ that takes an element s ∈ S to the
string consisting of just s.

Given a monoid M , we have a monoid FG(M) = M∗ which consists of strings
of elements of M where the latter is considered just as a set. We have a natural
map M∗ → M which sends a string (m1, . . . , mk) to the product m1 · · · · ·mk

as elements of the monoid M . The associative law for M implies that this is a
homomorphism of monoids. This gives a monoid homomorphism vM : FG(M)→
M .

One checks easily that u and v are natural transformations and that the previous
conditions are satisfied to make F the left adjoint functor of G.

Free Abelian Group

Given a set S, we treat it as a collection {es}s∈S of formal additive variables and
let 〈S〉 = ⊕s∈SZes be the collection of all finite “sums and differences” of these
variables. In other words, elements of 〈S〉 can be identified as the collection of
tuples of integers (ns)s∈S indexed by S such that all but finitely many ns are 0.
It is sometimes convenient to represent such a tuple as a sum

∑
f nses where

the subscript f indicates that the sum is finite. Note that such tuples can be
added “entry by entry” and this makes 〈S〉 into an Abelian group.

The assignment of 〈S〉 to S gives a functor F from Set to Ab, where the latter
is the category of Abelian groups. This is easily checked.

We also have the forgetful functor G from Ab to Set which associates to each
Abelian group its underlying set and to a homomorphism of Abelian groups
associates the underlying set map.

Note that GF (S) = 〈S〉 considered merely as a set rather than as an Abelian
group. There is a natural set map uS : S → 〈S〉 that takes an element s ∈ S
to the element where ns = 1 and all other ns′ for s′ 6= s are 0; equivalently, we
take s to the variable es.

Given an Abelian group A, we have the Abelian group FG(A) = 〈A〉 where A is
considered as a set. There is a natural map 〈A〉 → A which sends a formal sum∑

f naea to the sum
∑

f naa where we are treating A as an additive group. The
associative law for A implies that this is a homomorphism of Abelian groups.
This gives a Abelian group homomorphism vA : FG(A)→ A.

3



One checks easily that u and v are natural transformations and that the previous
conditions are satisfied to make F the left adjoint functor of G.

Polynomial Ring

Given a set S, we can treat it is a collection of variables {xs}s∈S , and let Z[S]
denote the collection of polynomials in these variables. Under the usual rules of
addition and multiplication of polynomials, we see that this is a commutative
ring (with identity).

The assignment of Z[S] to S gives a functor F from Set to CRing, where the
latter is the category of commutative rings with identity. This is easily checked.

We also have the forgetful functor G from CRing to Set which associates to each
commutative ring its underlying set and to a homomorphism of commutative
rings associates the underlying set map.

Note that GF (S) = Z[S] considered merely as a set rather than as a commutative
ring. There is a natural set map uS : S → Z[S] that takes an element s ∈ S to
the variable xs = 1.

Given an commutative ring with identity R, we have the commutative ring
FG(R) = Z[R] where R is considered as a set. There is a natural ring homomor-
phism Z[R]→ R which sends the variable xa to the element a in R; recall that
a map from a polynomial ring to a commutative ring is determined by what it
does to each variable. This gives a ring homomorphism vR : FG(R)→ R.

One checks easily that u and v are natural transformations and that the previous
conditions are satisfied to make F the left adjoint functor of G.

Abelianisation

Kiven a group K, we can form the Abelian group Kab = K/[K, K] where
[K, K] denotes the normal subgroup of K generated by elements of the form
[a, b] = a−1b−1ab.

Note that if K → H is a group homomorphism, then the image of [K, K] is
contained in [H, H]. Thus, we see that we have an induced group homomorphism
Kab → Hab. Thus, the assignment of Ka to the group K gives a functor from
Grp to Ab.

We also have a natural “forgetful” functor G from Ab to Grp that treats an
Abelian group as just a group and “forgets” that it is an Abelian group.

Note that GF (K) = Kab considered as a group rather than as an Abelian
group. The quotient homomorphism K → K/[K, K] = Kab gives a natural
transformation uK : K → GF (K).

Given an Abelian group A, we see that [A, A] is the trivial group. It follows
that FG(A) = A and thus, the identity map vA : FG(A)→ A gives the required
natural transformation.

4



One checks easily that u and v are natural transformations and that the previous
conditions are satisfied to make F the left adjoint functor of G.

Discrete/Indiscrete topology

So far, all our examples have been of an algebraic kind. Consider the functor G
from Top to Set that associates to a topological space the underyling set.

If S is a set, then a set map S → G(X) is automatically continuous as a map
S → X if we give S the discrete topology. This suggests that we define the
left-adjoint to G as the functor F from Set to Top that associates to a set S, the
topological space Sd which has the same underlying set with the discrete topology.
As seen above, Map(S, G(X)) can be identified with Cont(Sd = F (S), X). This
easily leads to the required adjunction.

If S is a set, then a set map G(X)→ S is automatically continuous as a map
X → S if we give S the indiscrete topology; this is the topology where the
only two open sets are the empty set and the whole space. This suggests that
we define a right-adjoint to G as a functor H from Set to Top that associates
to a set S, the topological space Si which has the same underlying set with
the indiscrete topology. As seen above, Map(G(X), S) can be identified with
Cont(X, Si) which leads to the required adjunction.

Compact-open topology

Given a locally-compact Hausdorff topological space X, we define a topology on
Cont(X, Y ) by prescribing the basic open sets S(K, U) for K ⊂ X compact and
U ⊂ Y open, defined by

S(K, U) = {f : X → Y |f continuous and k(K) ⊂ Y }

One can then prove the theorem that X × Z → Y is continuous if and only if
the resulting map Z → Cont(X, Y ) is continuous with this topology.

We define the functor F = FX from Top to itself as the one that sends a space
Z to the space X × Z.

We define the functor G = GX from Top to itself as the one that sends a space
Y to the space Cont(X, Y ) with the compact-open topology.

The above theorem can then be used to show that (F, G) is an adjoint pair.

5


	Adjoint functors
	Concepts
	Definition
	Free Monoid
	Free Abelian Group
	Polynomial Ring
	Abelianisation
	Discrete/Indiscrete topology
	Compact-open topology



