
Isomorphisms and Equivalences
Now that we have defined categories and functors between them, it makes sense
to look at the question of isomorphisms.

Isomorphisms
A functor F from a category C to a category D can be said to be surjective
if every object of D is of the form F (A) for some object A in C, and every
morphism in D is of the form F (f) for some morphism f in C.

If we only have the condition that every morphism F (A) to F (B) is of the form
F (f) (and not the condition that every object is of the form F (A)), we say that
the functor F is full.

A functor F from a category C to a category D can be said to be injective if
distinct objects of C go to distinct objects in D, and distinct morphisms in D go
to distinct morphisms in C.

If we only have the condition that F (f) = F (g) : F (A) → F (B) implies
f = g : A→ B (and not the condition that every F (A) = F (B) implies A = B),
we say that the functor F is faithful.

A functor F from a category C to a category D can be said to be an isomorphism
if it is injective and surjective. Clearly, this is the same as saying that there is
exactly one object of C for every chosen object of D, and exactly one morphism
of C for every chosen morphism of D.

It follows that we can equivalently require that there is a functor G from D to
C such that the composite functors G ◦ F and F ◦G are identity functors on C
and D respectively.

The functor F identifies objects and morphisms of C with those of D. Hence, in
some ways this is not particularly interesting!

Equivalences
We can weaken the above requirements as follows. As before we require a functor
F from C to D and a functor G from D to C. Instead of requiring G ◦ F to
be the identity functor, we only require that there be a natural transformation
η : G ◦ F → 1C which is an isomorphism. Similarly, we require a natural
transformation τ : F ◦G→ 1D which is an isomorphism. If such functors exist,
we say that C and D are equivalent categories.

Finite Sets

We use Fin to denote the category of finite sets. Note that even though the sets
are finite, the objects of this category do not form a set! For every set S, the
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set {S} is an object in Fin. Thus, we have a subcollection of the objects of Fin
which has a one-to-one correspondence with the collection of all sets.

We use F to denote that category whose objects are counting numbers 0, 1, . . . ,.
Each object n of F can also be thought of as the finite set [1, n] of natural
numbers from 1 to n. Note that this set is empty for n = 0 and in general has
exactly n elements. The morphisms from n to m are identified with set maps
from [1, n] to [1,m].

Clearly, there is a functor A from F to Fin which takes n to the set [1, n].

For each finite set S, the cardinality n = |S| of S is a counting number. We
choose one bijection (one-to-one onto map) fS : S → [1, n]. We define the functor
B from Fin to F which sends a finite set S to its cardinality B(S) = |S|, and a
set map g : S → T to the morphism B(f) = fT ◦ g ◦ f−1

S . One checks easily that
B is a functor.

Note that B ◦A is identity on objects of F since |[1, n]| = n. However, it need not
be the identity on morphisms since we may not have chosen f[1,n] : [1, n]→ [1, n]
to be the identity map! However, note that f[1,n] is an isomorphism. Even if we
choose f[1,n] to be the identity map, we will see below that A ◦B is not identity!
In any case, we check that ηn = f[1,n] gives a natural transformation from B ◦A
to 1F.

Given an object S of Fin, we see that A ◦ B(S) = [1, |S|] which need not be
the set S when S is not the set [1, n]. However, in order to define B we have
chosen an isomorphism fS : S → [1, |S|]. Thus, we have a natural transformation
defined by τS = f−1

S from A ◦B to 1Fin as can be easily checked.

Note that the objects and morphisms of F form sets. This is an example of a
“small” category which we shall introduce shortly. The point is that Fin is not
a small category. However, it is equivalent to one. Since many behaviours of
categories are preserved under equivalence, studying F is “enough” in order to
study Fin.

Finite dimensional linear spaces

Fix a field k. We will be looking at finite dimensional linear spaces (vector
spaces) over k.

We use FLink to denote the category of finite dimensional linear spaces over
the field k with morphisms as k-linear maps.

We use Mk to denote that category whose objects are counting numbers 0, 1, . . . ,.
Each object n of Mk can also be thought of as the finite dimensional k-linear
space kn. Note that this is the vector space {0} for n = 0. The morphisms
from n to m are identified with m× n matrices and matrix multiplication gives
composition. We identify 0 × n matrices and n × 0 matrices with the single
element 0 which gives a unique map n→ 0, respectively 0→ n.
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Clearly, there is a functor A from Mk to FLink which takes n to the linear
space kn where we think of this space as consisting of column vectors and matrix
multiplication as giving the linear map A(f) : kn → km associated with a matrix
f .

For each finite dimensional linear space L, the dimension n = dim(L) of L
is a counting number. We choose one k-linear isomorphism vL : kn → L.
This corresponds to a choice (v1, . . . , vn) of basis of L with map defined by
vL((a1, . . . , an)) =

∑n
i=1 anvn.

We define B(L) = n for an n-dimensional linear space. A linear map g : L→M
is associated to the matrix B(g) of the map v−1

M ◦ g ◦ vL from kn to km (with
respect to the standard basesis. This is the same as taking the matrix associated
to the linear g with respect to the chosen bases of L and M .

Note that B ◦A is identity on objects of Mk since the dimension of kn is n. Note
that it need not be the identity on morphisms since we may not have chosen the
standard basis for kn! However, note that vkn is an isomorphism. Even if we
choose the standard basis for kn, we will see below that A ◦B is not identity!
In any case, we check that ηn = vkn gives a natural transformation from B ◦A
to 1Mk

.

Given an object L of FLink, we see that A ◦B(L) = kn which need not be the
space L when L is not the space kn. In order to define B we have chosen an
isomorphism vL : L→ kdim(S). Thus, we have a natural transformation defined
by τL = vL from A ◦B to 1FLink

as can be easily checked.

Again note that the objects and morphisms of Mk form sets. Hence, this is
also an example of a “small” category. The point is that FLink is not a small
category. What we have shown is that it is equivalent to one. Thus, studying
Mk is “enough” in order to study FLink.
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