End-Semester Examination

MTH437 - Introduction to Schemes

- All questions carry equal marks.
- Use a separate page for the answer to each question.
- One page should be enough for each answer. Do not write long-winded answers!
- Please submit answers as PDF files containing all pages
- The answers must be submitted before midnight on 4th December 2021.

Q1. What is the number of \mathbb{F}_{2} points in the quasi-projective variety $P\left(x_{0}, x_{1}, x_{2}, x_{3} ; x_{0} x_{3}-x_{1} x_{2} ;\right)$? Generalise this to \mathbb{F}_{p} and justify your answer.

Solution 1. We want 4 -tuples $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of elements of \mathbb{F}_{p} such that not all are 0 and which satisfy $a_{0} a_{3}=a_{1} a_{2}$.
$a_{0} \neq 0$: Then $a_{3}=a_{1} a_{2} / a_{0}$ is determined by a_{1} and a_{2}. This gives $p-1$ values for a_{0} and p values for each of a_{1} and a_{2}. Thus, $p^{2}(p-1)$ tuples.
$a_{0}=0$: Then $a_{1} a_{2}=0$ which means at least one of them is 0 .
$a_{0}=0$ and $a_{1}=0$: Then a_{2} and a_{3} cannot both be 0 . So there are $p^{2}-1$ possibilities for their values.
$a_{0}=0$ and $a_{1} \neq 0$: When $a_{1} \neq 0$, then $a_{2}=0$ and a_{3} can be anything. There are $(p-1) p$ possibilities for the values of a_{1} and a_{3}.
Thus, there are, in total $p^{2}(p-1)+\left(p^{2}-1\right)+(p-1) p$ possible 4 -tuples.
Two 4-tuples which are unit multiples of each other give the same point. So we need to divide this by $p-1$ to get

$$
\frac{p^{2}(p-1)+\left(p^{2}-1\right)+(p-1) p}{p-1}=p^{2}+p+1+p=(p+1)^{2}
$$

Note that this can also be seen by noting that this variety is the Segre embedding which exhibits $\mathbb{P}^{1} \times \mathbb{P}^{1}$ as a closed subfunctor of \mathbb{P}^{3}. Since we have checked that $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$ has $(p+1)$ elements, the result follows!

Q2. What is the number of \mathbb{F}_{2} points in the quasi-projective variety $P\left(x_{0}, x_{1}, x_{2}, x_{3} ; ; x_{0} x_{3}, x_{1}\right)$? Generalise this to \mathbb{F}_{p} and justify your answer.

Solution 2. We want 4 -tuples $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of elements of \mathbb{F}_{p} such that not all are 0 such that either a_{1} is non-zero or $a_{0} a_{3}$ is non-zero. We also need to equate two 4 -tuples which are unit multiples of each other.
$a_{1} \neq 0$: Upto equivalence we can take $a_{1}=1$. We can then take any values of a_{0}, a_{2} and a_{3}. Thus, there are p^{3} possibilities up to equivalence.
$a_{1}=0$ and $a_{0} a_{3} \neq 0$: We can take any values of a_{2} and only non-zero values of a_{0} and a_{3}. Upto equivalence, we can take $a_{0}=1$. Then there are $p(p-1)$ possibilities for the pair $\left(a_{2}, a_{3}\right)$.
We thus see that there are $p^{3}+p^{2}-p$ possibilities.
We can also see this as the complement in \mathbb{P}^{3} of the projective variety $P\left(x_{0}, x_{1}, x_{2}, x_{3} ; x_{0} x_{3}, x_{1}\right)$. This can be seen as the join of two $\mathbb{P}^{1}\left(\mathbb{F}_{p}\right)$'s along a common point; this has $2(p+1)-1$ points. Since \mathbb{P}^{3} has $\left(p^{4}-1\right) /(p-1)$ points we get

$$
\frac{p^{4}-1}{p-1}-2(p+1)+1=p^{3}+p^{2}+p+1-2 p-1=p^{3}+p^{2}-p
$$

Q3. Given the affine schemes $X=A\left(x ; x^{2}+5\right)$ and $Y=A\left(x, y, z ; x y+z^{2}-1\right)$. Produce a morphism exhibiting X as a subfunctor of Y. Justify your answer.

Solution 3. This is a morphism of affine schemes and thus corresponds to a ring homomorphism

$$
\mathbb{Z}[x, y, z] /\left\langle x y+z^{2}-1\right\rangle \rightarrow \mathbb{Z}[x] /\left\langle x^{2}+5\right\rangle=\mathbb{Z}[\sqrt{-5}]
$$

We note that $2 \cdot 3+(\sqrt{-5})^{2}=1$ in the latter ring.
Thus, we can take the homomorphism given by $(x, y, z) \mapsto(2,3, \sqrt{-5})$.
Equivalently, we can see this as a $\mathbb{Z}[\sqrt{-5}]$-point of the affine scheme $Y=$ $A\left(x, y, z ; x y+z^{2}-1\right)$.
Note that the ring homomorphism is onto. This shows that X is a closed subfunctor of Y under this morphism.

Q4. Show that the following give points of \mathbb{P}^{1} :

- $(\sqrt{-5}-1: 2)$ is an $\mathbb{Z}[\sqrt{-5}, 1 / 2]$-point
- $(-3: \sqrt{-5}+1)$ is an $\mathbb{Z}[\sqrt{-5}, 1 / 3]$-point

Show that the two points restrict to the same $\mathbb{Z}[\sqrt{-5}, 1 / 6]$-point of \mathbb{P}^{1} under the natural homomorphisms $\mathbb{Z}[\sqrt{-5}, 1 / 2] \rightarrow \mathbb{Z}[\sqrt{-5}, 1 / 6]$ and $\mathbb{Z}[\sqrt{-5}, 1 / 3] \rightarrow$ $\mathbb{Z}[\sqrt{-5}, 1 / 6]$.
Justify that there is an $\mathbb{Z}[\sqrt{-5}]$-point of \mathbb{P}^{1} that resticts to these points under the natural homomorphisms $\mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}[\sqrt{-5}, 1 / 2]$ and $\mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}[\sqrt{-5}, 1 / 3]$.

Solution 4. Note that 2 is a unit in $\mathbb{Z}[\sqrt{-5}, 1 / 2]$. This shows the first statement.

Note that 3 is a unit in $\mathbb{Z}[\sqrt{-5}, 1 / 3]$. This shows the second statement.
We note that in $R=\mathbb{Z}[\sqrt{-5}, 1 / 6]$ we have

$$
-3(\sqrt{-5}-1,2)=(-3 \sqrt{-5}-1,-6)=(-3 \sqrt{-5}-1,(\sqrt{-5}+1)(\sqrt{-5}-1))=(\sqrt{-5}-1) \cdot(-3, \sqrt{-5}+1))
$$

Moreover, 3 and $\sqrt{-5}-1$ are both units in R. Thus, the tuples $(\sqrt{-5}-1: 2)$ and $(-3, \sqrt{-5}+1)$ represent the same R-point of \mathbb{P}^{1}.
Note that:

- \mathbb{P}^{1} is a sheaf functor
- 2 and 3 generate the unit ideal in $S=\mathbb{Z}[\sqrt{-5}]$.

Hence, by patching we obtain an S-point of of \mathbb{P}^{1}.
Q5. In which direction(s) are there morphisms between the following pairs of schemes? Justify your answers in each case.

1. $\operatorname{Sp}(\{0\})$ and \mathbb{A}^{1}.
2. $\operatorname{Sp}(\mathbb{Z})$ and $\operatorname{Sp}(\mathbb{Z}[1 / 2])$.
3. $\operatorname{Sp}(\mathbb{Z}[1 / 2])$ and $\operatorname{Sp}\left(\mathbb{F}_{2}\right)$.

Solution 5.

1. There is a unique morphism from the empty scheme $\operatorname{Sp}(\{0\})$ to any scheme. There are no morphisms to the empty scheme, except from itself!
2. There is a unique morphism from any scheme to $\operatorname{Sp}(\mathbb{Z})$. On the other hand there is no ring homomorphism $\mathbb{Z}[1 / 2] \rightarrow \mathbb{Z}$ since $1+1=2$ is a unit in the left-hand side.
3. There are no homomorphisms from either of these rings to the other ring since $2=0$ in one ring and 2 is a unit in the other ring.

Q6. Exhibit a morphism from $X=\mathbb{A}^{2}$ to $Y=P\left(x_{0}, x_{1}, x_{2}, x_{3} ; x_{0} x_{3}-x_{1} x_{2}\right)$ making X a subscheme of Y.

Solution 6. The open subscheme of Y where x_{0} is a unit is given by the affine scheme $U=A\left(x_{1}, x_{2}, x_{2} ; x_{3}-x_{1} x_{2}\right)$. Clearly, we have a morphism $\mathbb{A}^{2}=A(x, y ;)$ to U given by

$$
(X, y) \mapsto\left(x_{1}, x_{2}, x_{3}\right)=(x, y, x y)
$$

Q7. Show that the map $z \mapsto z^{2}$ from \mathbb{C}^{*} to itself is a local homeomorphisms with the usual topology. Hence, it gives a sheaf F over \mathbb{C}^{*} in the classical sense.

What can be said about $F\left(\mathbb{C}^{*}\right)$?

Solution Q7. The function $f(z)=z^{2}$ has derivative $f^{\prime}(z)=2 z \neq 0$ for z in \mathbb{C}^{*}. By the inverse function theorem it follows that it has a local holomorphic inverse. In particular, it has a local continuous inverse. Thus, it is a local homeomorphism.

Note that there is no global inverse function to f. Thus, $F\left(\mathbb{C}^{*}\right)$ is empty.

Q8. Does the morphism $x \mapsto x^{2}$ from $\operatorname{Spec}\left(\mathbb{C}\left[x, x^{-1}\right]\right)$ to itself give a local homeomorphism in the Zariski topology? Justify your answer.

Solution Q8. This is not a local homeomorphism.
A proper closed subset of $\operatorname{Spec}\left(\mathbb{C}\left[x, x^{-1}\right]\right)$ is a finite subset of \mathbb{C}^{*}. The complement of such a set always contains two points of the form $\{ \pm a\}$ for some complex number a. In particular, the map restricted to the complement is not one-to-one. Hence, it cannot be a homeomorphism restricted to on any open set in this space.

Q9. Write the following affine scheme X as a disjoint union of two affine schemes

$$
X=A\left(x_{1}, x_{2}, x_{3} ; x_{1} x_{2}, x_{3}\left(x_{3}-1\right), x_{1}\left(x_{3}-1\right), x_{2} x_{3}\right)
$$

Solution Q9. We note that x_{3} is an idempotent in the co-ordinate ring $\mathcal{O}(X)$.
Thus we have two disjoint closed subschemes corresponding to putting $x_{3}=0$ and $x_{3}=1$.

$$
\begin{aligned}
& X_{1}=A\left(x_{1}, x_{2}, x_{3} ; x_{3}-1, x_{2}\right) \\
& \left.X_{2}=A\left(x_{1}, x_{2}, x_{3} ; x_{3}, x_{1}\right)\right)
\end{aligned}
$$

such that X is the union of these two closed subschemes.
Note that X_{1} and X_{2} are "skew" lines (embedded \mathbb{A}^{1} 's) in the affine space $\mathbb{A}^{3}=A\left(x_{1}, x_{2}, x_{3}\right)$.

Q10. Consider the following functors CRing to Set. Which of these are "sheaf functors" (i.e. satisfy the (co-)sheaf property)?

1. The functor U that associates to each commutative ring R the set $U(R)$ of units in R.
2. The functor N that associates to each commutative ring R the set $N(R)$ of nilpotent elements in R.

Solution Q10.

1. Note that $\operatorname{Hom}\left(\mathbb{Z}\left[x, x^{-1}\right] \rightarrow R\right.$ can be identified with $U(R)$ by $f \mapsto f(x)$. This shows that U is the functor associated with the scheme $\operatorname{Sp}\left(\mathbb{Z}\left[x, x^{-1}\right]\right.$. It follows that it is also a sheaf.
2. Given a ring R, u_{1}, \ldots, u_{k} in R which generate the unit ideal and $x_{i} \in$ $N\left(R_{u_{i}}\right)$ that satisfy the patching condition we have to find x in $N(R)$ that restricts to x_{i} for each i.
Note that $N(R) \subset R$ and $R=\mathbb{A}^{1}(R)$ is a sheaf. Thus, there is a unique x in R such that x restricts to x_{i} for each i. We only need to check whether x is nilpotent.
Let n_{i} be such that $x_{i}^{n_{i}}=0$ and n be the maximum of the n_{i}. We note that $y=x^{n}$ is an element of R which restricts to $x_{i}^{n}=0$ for each i. By unique-ness of the patching for the sheaf \mathbb{A}^{1}, we see that $y=0$ as required.
