End-Semester Examination MTH437 — Introduction to Schemes

- All questions carry equal marks.
- Use a separate page for the answer to each question.
- One page should be enough for each answer. Do *not* write long-winded answers!
- Please submit answers as PDF files containing *all* pages
- The answers *must* be submitted before midnight on 4th December 2021.

Q1. What is the number of \mathbb{F}_2 points in the quasi-projective variety $P(x_0, x_1, x_2, x_3; x_0x_3 - x_1x_2;)$? Generalise this to \mathbb{F}_p and justify your answer.

Solution 1. We want 4-tuples (a_0, a_1, a_2, a_3) of elements of \mathbb{F}_p such that not all are 0 and which satisfy $a_0a_3 = a_1a_2$.

- $a_0 \neq 0$: Then $a_3 = a_1 a_2/a_0$ is determined by a_1 and a_2 . This gives p-1 values for a_0 and p values for each of a_1 and a_2 . Thus, $p^2(p-1)$ tuples.
- $a_0 = 0$: Then $a_1 a_2 = 0$ which means at least one of them is 0.
- $a_0 = 0$ and $a_1 = 0$: Then a_2 and a_3 cannot both be 0. So there are $p^2 1$ possibilities for their values.
- $a_0 = 0$ and $a_1 \neq 0$: When $a_1 \neq 0$, then $a_2 = 0$ and a_3 can be anything. There are (p-1)p possibilities for the values of a_1 and a_3 .

Thus, there are, in total $p^2(p-1) + (p^2-1) + (p-1)p$ possible 4-tuples.

Two 4-tuples which are unit multiples of each other give the *same* point. So we need to divide this by p-1 to get

$$\frac{p^2(p-1) + (p^2-1) + (p-1)p}{p-1} = p^2 + p + 1 + p = (p+1)^2$$

Note that this can also be seen by noting that this variety is the Segre embedding which exhibits $\mathbb{P}^1 \times \mathbb{P}^1$ as a closed subfunctor of \mathbb{P}^3 . Since we have checked that $\mathbb{P}^1(\mathbb{F}_p)$ has (p+1) elements, the result follows!

Q2. What is the number of \mathbb{F}_2 points in the quasi-projective variety $P(x_0, x_1, x_2, x_3; ; x_0x_3, x_1)$? Generalise this to \mathbb{F}_p and justify your answer.

Solution 2. We want 4-tuples (a_0, a_1, a_2, a_3) of elements of \mathbb{F}_p such that not all are 0 such that either a_1 is non-zero or a_0a_3 is non-zero. We also need to equate two 4-tuples which are unit multiples of each other.

- $a_1 \neq 0$: Upto equivalence we can take $a_1 = 1$. We can then take any values of a_0, a_2 and a_3 . Thus, there are p^3 possibilities up to equivalence.
- $a_1 = 0$ and $a_0 a_3 \neq 0$: We can take any values of a_2 and only non-zero values of a_0 and a_3 . Upto equivalence, we can take $a_0 = 1$. Then there are p(p-1)possibilities for the pair (a_2, a_3) .

We thus see that there are $p^3 + p^2 - p$ possibilities.

We can also see this as the *complement* in \mathbb{P}^3 of the projective variety $P(x_0, x_1, x_2, x_3; x_0x_3, x_1)$. This can be seen as the join of two $\mathbb{P}^1(\mathbb{F}_p)$'s along a common point; this has 2(p+1) - 1 points. Since \mathbb{P}^3 has $(p^4 - 1)/(p-1)$ points we get

$$\frac{p^4 - 1}{p - 1} - 2(p + 1) + 1 = p^3 + p^2 + p + 1 - 2p - 1 = p^3 + p^2 - p$$

Q3. Given the affine schemes $X = A(x; x^2 + 5)$ and $Y = A(x, y, z; xy + z^2 - 1)$. Produce a morphism exhibiting X as a subfunctor of Y. Justify your answer.

Solution 3. This is a morphism of affine schemes and thus corresponds to a ring homomorphism

$$\mathbb{Z}[x, y, z] / \langle xy + z^2 - 1 \rangle \to \mathbb{Z}[x] / \langle x^2 + 5 \rangle = \mathbb{Z}[\sqrt{-5}]$$

We note that $2 \cdot 3 + (\sqrt{-5})^2 = 1$ in the latter ring.

Thus, we can take the homomorphism given by $(x, y, z) \mapsto (2, 3, \sqrt{-5})$.

Equivalently, we can see this as a $\mathbb{Z}[\sqrt{-5}]$ -point of the affine scheme Y = $A(x, y, z; xy + z^2 - 1).$

Note that the ring homomorphism is *onto*. This shows that X is a closed subfunctor of Y under this morphism.

Q4. Show that the following give points of \mathbb{P}^1 :

- $(\sqrt{-5} 1 : 2)$ is an $\mathbb{Z}[\sqrt{-5}, 1/2]$ -point $(-3 : \sqrt{-5} + 1)$ is an $\mathbb{Z}[\sqrt{-5}, 1/3]$ -point

Show that the two points *restrict* to the same $\mathbb{Z}[\sqrt{-5}, 1/6]$ -point of \mathbb{P}^1 under the natural homomorphisms $\mathbb{Z}[\sqrt{-5}, 1/2] \to \mathbb{Z}[\sqrt{-5}, 1/6]$ and $\mathbb{Z}[\sqrt{-5}, 1/3] \to$ $\mathbb{Z}[\sqrt{-5}, 1/6].$

Justify that there is an $\mathbb{Z}[\sqrt{-5}]\text{-point of }\mathbb{P}^1$ that resticts to these points under the natural homomorphisms $\mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}[\sqrt{-5}, 1/2]$ and $\mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}[\sqrt{-5}, 1/3]$.

Solution 4. Note that 2 is a unit in $\mathbb{Z}[\sqrt{-5}, 1/2]$. This shows the first statement.

Note that 3 is a unit in $\mathbb{Z}[\sqrt{-5}, 1/3]$. This shows the second statement.

We note that in $R = \mathbb{Z}[\sqrt{-5}, 1/6]$ we have

$$-3(\sqrt{-5}-1,2) = (-3\sqrt{-5}-1,-6) = (-3\sqrt{-5}-1,(\sqrt{-5}+1)(\sqrt{-5}-1)) = (\sqrt{-5}-1)\cdot(-3,\sqrt{-5}+1))$$

Moreover, 3 and $\sqrt{-5} - 1$ are both *units* in *R*. Thus, the tuples $(\sqrt{-5} - 1 : 2)$ and $(-3, \sqrt{-5} + 1)$ represent the same *R*-point of \mathbb{P}^1 .

Note that:

- \mathbb{P}^1 is a sheaf functor
- 2 and 3 generate the unit ideal in $S = \mathbb{Z}[\sqrt{-5}]$.

Hence, by *patching* we obtain an S-point of \mathbb{P}^1 .

Q5. In which direction(s) are there morphisms between the following pairs of schemes? Justify your answers in each case.

- 1. $\operatorname{Sp}(\{0\})$ and \mathbb{A}^1 .
- 2. $\operatorname{Sp}(\mathbb{Z})$ and $\operatorname{Sp}(\mathbb{Z}[1/2])$.
- 3. $\operatorname{Sp}(\mathbb{Z}[1/2])$ and $\operatorname{Sp}(\mathbb{F}_2)$.

Solution 5.

- 1. There is a unique morphism from the empty scheme $Sp(\{0\})$ to any scheme. There are no morphisms to the empty scheme, except from itself!
- 2. There is a unique morphism from any scheme to $\operatorname{Sp}(\mathbb{Z})$. On the other hand there is no ring homomorphism $\mathbb{Z}[1/2] \to \mathbb{Z}$ since 1 + 1 = 2 is a unit in the left-hand side.
- 3. There are no homomorphisms from either of these rings to the other ring since 2 = 0 in one ring and 2 is a unit in the other ring.

Q6. Exhibit a morphism from $X = \mathbb{A}^2$ to $Y = P(x_0, x_1, x_2, x_3; x_0x_3 - x_1x_2)$ making X a subscheme of Y.

Solution 6. The open subscheme of Y where x_0 is a unit is given by the affine scheme $U = A(x_1, x_2, x_2; x_3 - x_1x_2)$. Clearly, we have a morphism $\mathbb{A}^2 = A(x, y;)$ to U given by

$$(X, y) \mapsto (x_1, x_2, x_3) = (x, y, xy)$$

Q7. Show that the map $z \mapsto z^2$ from \mathbb{C}^* to itself is a local homeomorphisms with the usual topology. Hence, it gives a sheaf F over \mathbb{C}^* in the classical sense.

What can be said about $F(\mathbb{C}^*)$?

Solution Q7. The function $f(z) = z^2$ has derivative $f'(z) = 2z \neq 0$ for z in \mathbb{C}^* . By the inverse function theorem it follows that it has a local *holomorphic* inverse. In particular, it has a local *continuous* inverse. Thus, it is a local homeomorphism.

Note that there is no global inverse function to f. Thus, $F(\mathbb{C}^*)$ is empty.

Q8. Does the morphism $x \mapsto x^2$ from $\text{Spec}(\mathbb{C}[x, x^{-1}])$ to itself give a local homeomorphism in the Zariski topology? Justify your answer.

Solution Q8. This is not a local homeomorphism.

A proper closed subset of $\operatorname{Spec}(\mathbb{C}[x, x^{-1}])$ is a finite subset of \mathbb{C}^* . The complement of such a set *always* contains two points of the form $\{\pm a\}$ for some complex number *a*. In particular, the map restricted to the complement is *not* one-to-one. Hence, it cannot be a homeomorphism restricted to on *any* open set in this space.

Q9. Write the following affine scheme X as a *disjoint* union of two affine schemes

 $X = A(x_1, x_2, x_3; x_1x_2, x_3(x_3 - 1), x_1(x_3 - 1), x_2x_3)$

Solution Q9. We note that x_3 is an idempotent in the co-ordinate ring $\mathcal{O}(X)$.

Thus we have two *disjoint* closed subschemes corresponding to putting $x_3 = 0$ and $x_3 = 1$.

$$X_1 = A(x_1, x_2, x_3; x_3 - 1, x_2)$$

$$X_2 = A(x_1, x_2, x_3; x_3, x_1))$$

such that X is the union of these two closed subschemes.

Note that X_1 and X_2 are "skew" lines (embedded \mathbb{A}^1 's) in the affine space $\mathbb{A}^3 = A(x_1, x_2, x_3)$.

Q10. Consider the following functors **CRing** to **Set**. Which of these are "sheaf functors" (i.e. satisfy the (co-)sheaf property)?

- 1. The functor U that associates to each commutative ring R the set U(R) of units in R.
- 2. The functor N that associates to each commutative ring R the set N(R) of nilpotent elements in R.

Solution Q10.

- 1. Note that $\operatorname{Hom}(\mathbb{Z}[x, x^{-1}] \to R \text{ can be identified with } U(R) \text{ by } f \mapsto f(x)$. This shows that U is the functor associated with the scheme $\operatorname{Sp}(\mathbb{Z}[x, x^{-1}])$. It follows that it is also a sheaf.
- 2. Given a ring R, u_1, \ldots, u_k in R which generate the unit ideal and $x_i \in N(R_{u_i})$ that satisfy the patching condition we have to find x in N(R) that restricts to x_i for each i.

Note that $N(R) \subset R$ and $R = \mathbb{A}^1(R)$ is a sheaf. Thus, there is a unique x in R such that x restricts to x_i for each i. We only need to check whether x is nilpotent.

Let n_i be such that $x_i^{n_i} = 0$ and n be the maximum of the n_i . We note that $y = x^n$ is an element of R which restricts to $x_i^n = 0$ for each i. By unique-ness of the patching for the sheaf \mathbb{A}^1 , we see that y = 0 as required.