- **7.5.** Show that if A, B are modules over a principal ideal domain and if $a \in A$, $b \in B$ are not torsion elements then $a \otimes b \neq 0$ in $A \otimes_A B$ and is not a torsion element.
- **7.6.** Show that if A is a finitely generated module over a principal ideal domain and if $A \otimes_A A = 0$, then A = 0. Give an example of an abelian group $G \neq 0$ such that $G \otimes G = 0$.
- 7.7. Let $A \times B$ be the cartesian product of the sets underlying the right Λ -module A and the left Λ -module B. For G an abelian group call a function $f: A \times B \rightarrow G$ bilinear if

$$\begin{split} f(a_1+a_2,b) &= f(a_1,b) + f(a_2,b), \ a_1,a_2 \in A, \ b \in B; \\ f(a,b_1+b_2) &= f(a,b_1) + f(a,b_2), \ a \in A, \ b_1,b_2 \in B; \\ f(a\lambda,b) &= f(a,\lambda b), \ a \in A, \ b \in B, \ \lambda \in A. \end{split}$$

Show that the tensor product has the following universal property. To every abelian group G and to every bilinear map $f: A \times B \longrightarrow G$ there exists a unique homomorphism of abelian groups

$$g: A \otimes_A B \rightarrow G$$
 such that $f(a, b) = g(a \otimes b)$.

7.8. Show that an associative algebra (with unity) over the commutative ring Λ may be defined as follows. An algebra A is a Λ -module together with Λ -module homomorphisms $\mu: A \otimes_A A \to A$ and $\eta: \Lambda \to A$ such that the following diagrams are commutative

(The first diagram shows that $\eta(1_A)$ is a left and a right unity for A, while the second diagram yields associativity of the product.) Show that if A and B are algebras over Λ then $A \otimes_A B$ may naturally be made into an algebra over Λ .

7.9. An algebra A over Λ is called *augmented* if a homomorphism $\varepsilon: A \to \Lambda$ of algebras is given. Show that the group algebra KG is augmented with $\varepsilon: KG \to K$ defined by $\varepsilon(x) = 1$, $x \in G$. Give other examples of augmented algebras.

8. The Functor Tor

Let A be a right Λ -module and let B be a left Λ -module. Given a projective presentation $R \stackrel{\mu}{\rightarrowtail} P \stackrel{\epsilon}{\Longrightarrow} A$ of A we define

$$\operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B) = \ker(\mu_{\bullet}: R \otimes_{\Lambda} B \to P \otimes_{\Lambda} B)$$
.

The sequence

$$0 \! \to \! \operatorname{Tor}_{\varepsilon}^{\Lambda}(A,B) \! \to \! R \otimes_{\Lambda} B \! \to \! P \otimes_{\Lambda} B \! \to \! A \otimes_{\Lambda} B \! \to \! 0$$

is exact. Obviously we can make $\operatorname{Tor}_{\varepsilon}^{\Lambda}(A, -)$ into a covariant functor by defining, for a map $\beta: B \to B'$, the associated map

$$\beta_* : \operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B) \rightarrow \operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B')$$

to be the homomorphism induced by $\beta_*: R \otimes_{\Lambda} B \to R \otimes_{\Lambda} B'$. To any projective presentation $S \xrightarrow{\nu} Q \xrightarrow{\eta} B$ of B we define

$$\overline{\operatorname{Tor}}_{\eta}^{\Lambda}(A, B) = \ker(v_* : A \otimes_{\Lambda} S \longrightarrow A \otimes_{\Lambda} Q)$$
.

With this definition the sequence

$$0 \longrightarrow \overline{\operatorname{Tor}}_{\eta}^{A}(A, B) \longrightarrow A \otimes_{A} S \longrightarrow A \otimes_{A} Q \longrightarrow A \otimes_{A} B \longrightarrow 0$$

is exact. Clearly, given a homomorphism $\alpha: A \to A'$, we can associate a homomorphism $\alpha_*: \overline{\operatorname{Tor}}_{\eta}^A(A,B) \to \overline{\operatorname{Tor}}_{\eta}^A(A',B)$, which is induced by $\alpha_*: A \otimes_A S \to A' \otimes_A S$. With this definition $\overline{\operatorname{Tor}}_{\eta}^A(-,B)$ is a covariant functor.

Proposition 8.1. If A (or B) is projective, then

$$\operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B) = 0 = \overline{\operatorname{Tor}}_{\eta}^{\Lambda}(A, B).$$

Proof. Since A is projective, the short exact sequence $R \xrightarrow{\mu} P \xrightarrow{\epsilon} A$ splits, i.e. there is $\kappa : P \to R$ with $\kappa \mu = 1_R$. Hence

$$\kappa \mu \otimes 1 = (\kappa \otimes 1) (\mu \otimes 1) = 1_{R \otimes_A B},$$

and consequently $\mu \otimes 1$ is monomorphic. Thus $\operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B) = 0$.

If A is projective, A is flat by Proposition 7.4. Hence

$$0 \longrightarrow A \otimes_{\Lambda} S \longrightarrow A \otimes_{\Lambda} Q \longrightarrow A \otimes_{\Lambda} B \longrightarrow 0$$

is exact. Thus $\overline{\operatorname{Tor}}_{\eta}^{A}(A,B)=0$. The remaining assertions merely interchange left and right. \square

Next we will use Lemma 5.1 to show that $\overline{\operatorname{Tor}}_{\eta}^{A}$ and $\operatorname{Tor}_{\varepsilon}^{A}$ denote the same functor. Again let $R \stackrel{\mu}{\longrightarrow} P \stackrel{\varepsilon}{\longrightarrow} A$ and $S \stackrel{\nu}{\longrightarrow} Q \stackrel{\eta}{\longrightarrow} B$ be projective presentations. We then construct the commutative diagram

By a repeated application of Lemma 3.1 we obtain

$$\overline{\operatorname{Tor}}_{\eta}^{\Lambda}(A, B) = \operatorname{Im} \Sigma_{1} \cong \operatorname{Ker} \Sigma_{2} \cong \operatorname{Im} \Sigma_{3} \cong \operatorname{Ker} \Sigma_{4} \cong \operatorname{Im} \Sigma_{5} = \operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B).$$

Now let $R' \xrightarrow{\mu'} P' \xrightarrow{\varepsilon'} A'$ be a projective presentation of A' and $\alpha: A \longrightarrow A'$ a homomorphism. We can then find $\varphi: P \longrightarrow P'$ and $\psi: R \longrightarrow R'$ such that the following diagram commutes:

$$R \xrightarrow{\mu} P \xrightarrow{\varepsilon} A$$

$$\downarrow^{\psi} \qquad \downarrow^{\varphi} \qquad \downarrow^{\alpha}$$

$$R' \xrightarrow{\mu'} P' \xrightarrow{\varepsilon'} A'$$

$$(8.2)$$

These homomorphisms induce a map from the diagram (8.1) into the diagram corresponding to the presentation $R' \rightarrow P' \rightarrow A'$. Consequently we obtain a homomorphism

$$\operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B) \xrightarrow{\sim} \overline{\operatorname{Tor}}_{\eta}^{\Lambda}(A, B) \xrightarrow{\alpha_{*}} \overline{\operatorname{Tor}}_{\eta}^{\Lambda}(A', B) \xrightarrow{\sim} \operatorname{Tor}_{\varepsilon'}^{\Lambda}(A', B)$$

which is visibly independent of the choice of φ in (8.2). Choosing $\alpha = 1_A$ we obtain an isomorphism $\operatorname{Tor}_{\varepsilon}^{\Lambda}(A, B) \xrightarrow{\sim} \operatorname{Tor}_{n}^{\Lambda}(A, B) \xrightarrow{\sim} \operatorname{Tor}_{\varepsilon'}^{\Lambda}(A, B)$.

Collecting the information obtained, we have shown that there is a natural equivalence between the functors $\operatorname{Tor}_{\varepsilon}^{\Lambda}(A,-)$ and $\operatorname{Tor}_{\varepsilon}^{\Lambda}(A,-)$, that we therefore can drop the subscript ε , writing $\operatorname{Tor}^{\Lambda}(A,-)$ from now on; further that $\operatorname{Tor}^{\Lambda}(-,B)$ can be made into a functor, which is equivalent to $\overline{\operatorname{Tor}}_{\eta}^{\Lambda}(-,B)$ for any η . We thus can use the notation $\operatorname{Tor}^{\Lambda}(A,B)$ for $\overline{\operatorname{Tor}}_{\eta}^{\Lambda}(A,B)$, also. We finally leave it to the reader to show that $\operatorname{Tor}^{\Lambda}(-,-)$ is a bifunctor. The fact that $\operatorname{Tor}^{\Lambda}(-,-)$ coincides with $\overline{\operatorname{Tor}}^{\Lambda}(-,-)$ is sometimes expressed by saying that Tor is balanced.

Similarly to Theorems 5.2 and 5.3, one obtains

Theorem 8.2. Let A be a right Λ -module and $B' \xrightarrow{\kappa} B \xrightarrow{\nu} B''$ an exact sequence of left Λ -modules, then there exists a connecting homomorphism $\omega: \operatorname{Tor}^{\Lambda}(A, B'') \longrightarrow A \otimes_{\Lambda} B'$ such that the following sequence is exact:

$$\operatorname{Tor}^{A}(A, B') \xrightarrow{\kappa_{*}} \operatorname{Tor}^{A}(A, B) \xrightarrow{\nu_{*}} \operatorname{Tor}^{A}(A, B'') \xrightarrow{\omega} A \otimes_{A} B'$$

$$\xrightarrow{\kappa_{*}} A \otimes_{A} B \xrightarrow{\nu_{*}} A \otimes_{A} B'' \xrightarrow{} 0. \tag{8.3}$$

Theorem 8.3. Let B be a left Λ -module and let $A' \xrightarrow{\kappa} A \xrightarrow{\nu} A''$ be an exact sequence of right Λ -modules. Then there exists a connecting homomorphism $\omega : \operatorname{Tor}^{\Lambda}(A'', B) \to A' \otimes_{\Lambda} B$ such that the following sequence is exact:

$$\operatorname{Tor}^{A}(A', B) \xrightarrow{\kappa_{*}} \operatorname{Tor}^{A}(A, B) \xrightarrow{\nu_{*}} \operatorname{Tor}^{A}(A'', B) \xrightarrow{\omega} A' \otimes_{A} B$$

$$\xrightarrow{\kappa_{*}} A \otimes_{A} B \xrightarrow{\nu_{*}} A'' \otimes_{A} B \xrightarrow{\longrightarrow} 0.$$
(8.4)

Proof. We only prove Theorem 8.2; the proof of Theorem 8.3 may be obtained by replacing Tor by Tor. Consider the projective presentation

 $R \xrightarrow{\mu} P \xrightarrow{\varepsilon} A$ and construct the diagram:

By applying Lemma 5.1 we obtain the asserted sequence.

We remark that like the Hom-Ext sequences the sequences (8.3) and (8.4) are natural. Notice that by contrast with the two sequences involving Ext we obtain only *one* kind of sequence involving Tor, since A, B play symmetric roles in the definition of Tor.

Corollary 8.4. Let Λ be a principal ideal domain. Then the homomorphisms $\kappa_* : \operatorname{Tor}^{\Lambda}(A, B') \to \operatorname{Tor}^{\Lambda}(A, B)$ in sequence (8.3) and

 κ_* : $\operatorname{Tor}^{\Lambda}(A', B) \longrightarrow \operatorname{Tor}^{\Lambda}(A, B)$ in sequence (8.4) are monomorphic.

Proof. By Corollary I.5.3 R is a projective right Λ -module, hence the map $\kappa_*: R \otimes_{\Lambda} B' \to R \otimes_{\Lambda} B$ in diagram (8.5) is monomorphic, whence the first assertion. Analogously one obtains the second assertion.

Exercises:

- **8.1.** Show that, if A (or B) is flat, then $Tor^A(A, B) = 0$.
- **8.2.** Evaluate the exact sequences (8.3), (8.4) for the examples given in Exercise 5.7 (i), ..., (v).
- **8.3.** Show that if A is a torsion group then $A \cong \text{Tor}(A, \mathbb{Q}/\mathbb{Z})$; and that, in general, $\text{Tor}(A, \mathbb{Q}/\mathbb{Z})$ embeds naturally as a subgroup of A. Identify this subgroup.
- **8.4.** Show that if A and B are abelian groups and if T(A), T(B) are their torsion subgroups, then $Tor(A, B) \cong Tor(T(A), T(B))$.

Show that $m \operatorname{Tor}(A, B) = 0$ if m T(A) = 0.

- 8.5. Show that Tor is additive in each variable.
- 8.6. Show that Tor respects direct limits over directed sets.
- **8.7.** Show that the abelian group A is flat if and only if it is torsion-free.
- **8.8.** Show that A' is pure in A if and only if $A' \otimes G \rightarrow A \otimes G$ is a monomorphism for all G (see Exercise I. 1.7).
- **8.9.** Show that $\operatorname{Tor}^{A}(A, B)$ can be computed using a flat presentation of A; that is, if $R \xrightarrow{\mu} P \xrightarrow{\epsilon} A$ with P flat, then

$$\operatorname{Tor}^{\Lambda}(A, B) \cong \ker(\mu_* : R \otimes_{\Lambda} B \to P \otimes_{\Lambda} B)$$
.