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111. Extensions of Medules

Show that if A, B are modules over a principal ideal domain and if ae€ A4,
be B are not torsion elements then a®b=+0in A®,B and is not a torsion
element.
Show that if A is a finitely generated module over a principal ideal domain
and if A ®,A4 =0, then 4=0. Give an example of an abelian group G = 0 such
that GR G =0.
Let A x B be the cartesian product of the sets underlying the right A-module 4
and the left A-module B. For G an abelian group call a function f : A x B—G
bilinear if

fla, +a,,b)= fla,,b)+ f(a,, b), a,,a,€ A, beB;

fla, by +by)=fla,b))+ fla,by), ae A, by,b,€B;

flai,b)= fla,Ab), ac A, beB, leA.

Show that the tensor product has the following universal property. To every
abelian group G and to every bilinear map f: A x B— G there exists a unique
homomorphism of abelian groups

g:A®,B—G suchthat f(a,b)=gla®b).

Show that an associative algebra (with unity) over the commutative ring A
may be defined as follows. An algebra A is a A-module together with A-module
homomorphisms p: A®,4— A and i7: A— A such that the following diagrams
are commutative

ADA— A A@ A ARAR®ALEL AR, A4

AQ AL Act AR, A A®,A A.

m

(The first diagram shows that n(14) is a left and a right unity for A, while the
second diagram yields associativity of the product.) Show that if A and B are
algebras over A then A ®,B may naturally be made into an algebra over A
An algebra 4 over A is called augmented if a homomorphism £: A—A of
algebras is given. Show that the group algebra KG is augmented with
&: KG— K defined by ¢(x)=1, xe G. Give other examples of augmented
algebras.

8. The Functor Tor

Let A be a right A-module and let B be a left A-module. Given a projective
presentation R~ P-» A4 of A we define

Tor?(A. By=ker(u,: R®,B—P®,B).

The sequence

0—Tor(4,B-R®,B—P®,B—A®,B—0
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is exact. Obviously we can make Tor?(A4, —) into a covariant functor by
defining, for a map f: B— B/, the associated map

B, :Tor}(A, B)—Tor/ (A4, B)

to be the homomorphism induced by f,:R®,B—R®,B'"
To any projective presentation S-%Q-1» B of B we define

Tor}(A. By=ker(v,: A®,5—A®,0).

With this definition the sequence
0—Tor (A, B)»A®,S—A4®,0—A®,B—0

is exact. Clearly, given a homomorphism o : 4— A’, we can associate a
homomorphism o, : Tor; (4, B)—Tor (4. B), which is induced by
o, A®,8§— A ®,S. With this definition Tor, (—,B) is a covariant
functor.

Proposition 8.1. If A (or B) is projective, then
Tor!(A, B)=0=Tor; (4, B).

Proof. Since A is projective, the short exact sequence R-£ P-£» A
splits, i.e. there is k¥ : P— R with xu =1,. Hence

Ku@1l=kx®@1)(u®1)= lgg 5,

and consequently y® | is monomorphic. Thus Tor? (4, B) = 0.
If A is projective. 4 is flat by Proposition 7.4. Hence

0-4®,5—A®,0-A®,B—0

is exact. Thus Tor; (4, B)=0. The remaining assertions merely inter-
change left and right. [J

Next we will use Lemma 5.1 to show that Tor;' and Tor;' denote
the same functor. Again let R-P-%» 4 and S->Q-2»B be projective
presentations. We then construct the commutative diagram

0———Tor(4, B)
Es

R®AS‘—FR ®AQ_»R®AB
J s e (8.1)

+

0 P®,S—P®,0—>»P®,B

| = | =

Tor; (4, B)— 41 ®,S— A®,0—»A®,B
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By a repeated application of Lemma 3.1 we obtain
Tor) (A, B)=ImX, =KerX,=ImX;=KerX,~ImX;=Tor(4, B).

Now let R'-% P'£» A" be a projective presentation of A and o: A— A’
a homomorphism. We can then find ¢ : P—P" and v : R— R’ such that
the following diagram commutes:

R—E£5P %A

T

Rr u’ Pr £ Aa

These homomorphisms induce a map from the diagram (8.1) into the
diagram corresponding to the presentation R’ P'—» A’. Consequently
we obtain a homomorphism

Tor{ (A, B)=Tor; (A, B)-=>Tor; (4", B} Tor/ (4. B)

which is visibly independent of the choice of ¢ in (8.2). Choosing o =1,
we obtain an isomorphism Tor/ (A, B)>Tor; (A, B)>Tor{ (A, B).
Collecting the information obtained, we have shown that there is a
natural equivalence between the functors Tor? (A4, —) and Tor?(A4, —),
that we therefore can drop the subscript &, writing Tor* (A4, —) from now
on; further that Tor"(—, B) can be made into a functor, which is equiv-
alent to Tor;'(—. B) for any 1. We thus can use the notation Tor"(A. B)
for ﬁﬁ(A.B), also. We finally leave it to the reader to show that
Tor*(—, —) is a bifunctor. The fact that Tor?(—, —) coincides with
Tor?(—, —) is sometimes expressed by saying that Tor is balanced.
Similarly to Theorems 5.2 and 5.3, one obtains

Theorem 8.2. Let A be a right A-module and B'~*> B»B" an exact
sequence of left A-modules, then there exists a connecting homonmorphism

w: Tor"(A. B")— A ®,B' such that the following sequence is exact:
Tor" (4, B)—>Tor"(4, B)—>Tor*(4, B'**>A®,B 83)
2, A®,B—>A®,B"—0. -

Theorem 8.3. Let B be a left A-module and let A"~ A-» A" be an
exact sequence of right A-modules. Then there exists a connecting homo-
morphism o : Tor(A”, B)—A ®,B such that the following sequence is

exdact:
Tor" (A", B)—"— Tor” (A, B)LrTorA(A". B2 4’ ®4.B (8.4)
e A Gy BB sy B 50, '

Proof. We only prove Theorem 8.2; the proof of Theorem 8.3 may
be obtained by replacing Tor by Tor. Consider the projective presentation
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R P-%» A and construct the diagram:

Tor*(A4, B) - »Tor*(A, B) - »Tor"(4, B)

|

R®,B — R®,B — R®,B"—0

l (8.5)
0—P®,B — P®,B — P®,B'—0

l

A®,B > ARB > A@,B

By applying Lemma 5.1 we obtain the asserted sequence. []

We remark that like the Hom-Ext sequences the sequences (8.3) and
(8.4) are natural. Notice that by contrast with the two sequences involving
Ext we obtain only one kind of sequence involving Tor, since A4, B play
symmetric roles in the definition of Tor.

Corollary 8.4. Let A be a principal ideal domain. Then the homo-
morphisms x, : Tor" (A, B)—Tor"(A. B) in sequence (8.3) and

Kk, : Tor*(A4', B)—Tor!(A, B) in sequence (8.4) are monomorphic.

Proof. By Corollary 1.5.3 R is a projective right A-module, hence the
map k,:R®,B—R®,B in diagram (8.5) is monomorphic, whence
the first assertion. Analogously one obtains the second assertion. []

Exercises:

8.1. Show that. if 4 (or B) is flat, then Tor"(4, B)=0.

8.2. Evaluate the exact sequences (8.3), (8.4) for the examples given in Exercise 5.7
(i) .o ()

8.3. Show that if 4 is a torsion group then 4 = Tor (A4, Q/Z); and that, in general,
Tor(A, Q/Z) embeds naturally as a subgroup of A. Identify this subgroup.

8.4. Show that if A and B are abelian groups and if T(A), T(B) are their torsion

ibigroups, then Tor(A. B)= Tor(T(A). T(B)).

Show that m Tor(A4, B)=0if m T(A4) =0.
8.5. Show that Tor is additive in each variable.
8.6. Show that Tor respects direct limits over directed sets.
8.7. Show that the abelian group A is flat if and only if it is torsion-free.
8.8. Show that A’ is pure in A4 if and only if /®G—A®G is a monomorphism
for all G (see Exercise . 1.7).
Show that Tor?(4, B) can be computed using a flat presentation of A4; that
is, if R~% P-%» A with P flat, then

Tor*(A, B)~ker(u, : R@®,B—P®,B).

8.9



