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Here we shall deduce two exact sequences connecting Hom and Ext.
We start with the following very useful lemma.

Lemma 5.1. Let the following commutative diagram have exact rows.

A—-+t>5B —~t5C—0

R
0— A" B ("

Then there is a “connecting homomorphism” o : kery— cokera such that
the following sequence is exact:

kera—*—ker f—=kery—2— coker a— coker f—2—cokery . (5.1)

If p is monomorphic, so is p, : if &' is epimorphic, so is &, .

Proof. It is very easy to see — and we leave the verification to the
reader — that the final sentence holds and that we have exact sequences

kera—— kerf —=-kery,
cokera—2 coker f—2cokery .

It therefore remains to show that there exists a homomorphism
o : kery—cokero “connecting” these two sequences. In fact, w is defined
as follows.

Let cekery, choose be B with eh=c. Since ¢ fb=yeb=yc=0
there exists a'e A" with fb=u'a'. Define w(c)=[a’]. the coset of a’ in
cokera.

We show that w is well defined, that is. that w(c) is independent of the
choice of b. Indeed, let b € B with ¢b =c, then b = b + pa and

plb+pay=pb+p'aa.

Hence @’ =a’' + aaq, thus [@'] =[a']. Clearly w is a homomorphism.

Next we show exactness at kery. If cekery is of the form &b for
bekerfl, then 0=fb=yp'a’, hence ¢'=0 and w(c)=0. Conversely, let
c € kery with w(c)=0. Then ¢ =¢bh, ib=p'a’ and there exists a € 4 with
oa=d. Consider b =b — pa. Clearly eb = c, but

fb=pb—fBua=pb—pa =0,

hence c € kery is of the form £b with b € ker §.

Finally we prove exactness at cokera’. Let w(c) = [a’] € cokera. Thus
c=eb, pfb=p'a’, and pi[a]=[pa]=[pb]=0. Conversely, let
[a]ecokera with p,[a]=0. Then p'a'=fb for some be B and
c=ebekery. Thus [@]=w(c). [



