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1.3. Prove the duals of Lemmas 1.1, 1.2, 1.3.

1.4. Show that the class of the split extension in E(A4, B) is preserved under the
induced maps.

1.5. Prove: If P is projective, E(P, B) contains only one element.

1.6. Prove: If I is injective, E(A4, I) contains only one element

1.7. Show that E(A.B,®B,)=E(A. B;)x E(A.B,). Is there a corresponding
formula with respect to the first variable?

1.8. Prove Theorem 1.4 using explicit constructions of pull-back and push-out

2. The Functor Ext

In the previous section we have defined a bifunctor E(—, —) from the
category of A-modules to the categories of sets. In this section we shall
define another bifunctor Ext,(—, —) to the category of abelian groups,
and eventually compare the two.

A short exact sequence R-% P-“» 4 of A-modules with P projective
is called a projective presentation of A. By Theorem 1.2.2 such a presenta-
tion induces for a A-module B an exact sequence

Hom , (A, B)—=> Hom , (P, B)—“-Hom,,(R, B). 2.1)

To the modules 4 and B, and to the chosen projective presentation of A
we therefore can associate the abelian group

Extf (A, B) = coker (u* : Hom (P, B)—Hom (R, B)).

The superscript ¢ is to remind the reader that the group is defined
via a particular projective presentation of A. An element in Ext%(A, B)
may be represented by a homomorphism ¢ : R— B. The element rep-
resented by ¢:R—B will be denoted by [¢] e Exty(4, B). Then
[¢:1=[¢,] if and only if ¢, — ¢, extends to P.

Clearly a homomorphism f#: B— B’ will map the sequence (2.1) into
the corresponding sequence for B'. We thus get an induced map
B : Ext(A4, B)— Ext4 (A4, B'), which is easily seen to make Ext%(A4, —)
into a functor.

Next we will show that for two different projective presentations of 4
we obtain the “same” functor. Let R>£P'<» A’ and R-P-£t» A4 be
projective presentations of A’, A respectively. Let o: A’— A be a homo-
morphism. Since P’ is projective, there is a homomorphism 7 : P'— P,
inducing ¢ : R"— R such that the following diagram is commutative:

R/ u' Pt e Ar
R—E-P —~L»A4

We sometimes say that = lifts a.
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Clearly n. together with o, will induce a map
* : Ext, (4, B)— Ext5(A’, B)

which plainly is natural in B. Thus every = gives rise to a natural trans-
formation from Ext% (4, —) into Ext%(A4’, —). In the following lemma we
prove that this natural transformation depends only on #: 4"~ A4 and
not on the chosen n: P'— P lifting x.

Lemma 2.1. 7* does not depend on the chosen n: P'— P but only on
w:A'—A.

Proof. Let ;: PP’—P, i=1,2, be two homomorphisms lifting o and
inducing o;: R'— R, so that the following diagram is commutative for
i=1,2

R pP— 54

R—E-P —£t»A4

Consider n, —m,; since n,, n, induce the same map o: A'— A, m, — 7,
factors through a map 7: P’—R, such that n; — n, = pt. It follows that
g, —oy=ty’. Thus, if ¢:R—B is a representative of the element
[¢] € Ext}(4, B), we have nf[o]=[¢0]=[¢0,+¢tp]=I[¢0c,]
=nile]l [

To stress the independence from the choice of = we shall call the
natural transformation («; P', P) : Ext% (4, —)— Ext% (4’, — ), instead of 7*.
Leta : A"—A"and a: A'— A be two homomorphisms and R"»— P”"—» 4",
R'~—P'—»A', R—P—A projective presentations of 4", A, A re-
spectively. Let n': P"— P" lift o' and n: P'— P lift «. Thenn «': P"—P
lifts o= %'; whence it follows that

(@'; P", P (a; P, P)= (o= x'; P", P). 2.2)
Also, we have
(LisE P)=1; (2.3)
This yields a proof of

Corollary 2.2. Let R—P-» A and R'—P' £» A be two projective
presentations of A. Then

(1,; P, P): Exty (4, —)—Ext4y(4, —)
is a natural equivalence.

Proof. Letn:P—P and o' : P’— P both lift 1,: A— A. By formulas
(2.2)and (2.3) we obtain (1 .; P, P'): (1,; P', P)=(14; P, P)=1: Ext}(4, —)
— Ext% (A4, —). Analogously, (1,; P, P)- (1 4; P, P")= 1, whence the asser-
tion. []
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By this natural equivalence we are allowed to drop the superscript &
and to write, simply, Ext,(4, B).

Of course, we want to make Ext,(—, B) into a functor. [t is obvious
by now that given o.: A'— A we can define an induced map o* as follows:
Choose projective presentations R'>—P'£» 4’ and R~—»P-» A of A’, A
respectively, and let o* = (a; P', P): Ext% (A4, B)—Ext%(4’, B). Formulas
(2.2), (2.3) establish the facts that this definition is compatible with the
natural equivalences of Corollary 2.2 and that Ext,(—, B) becomes a
(contravariant) functor. We leave it to the reader to prove the bi-
functoriality part in the following theorem.

Theorem 2.3. Ext,(—, —) is a bifunctor from the category of A-
modules to the category of abelian groups. It is contravariant in the first,
and covariant in the second variable. []

Instead of regarding Ext,(A, B) as an abelian group, we clearly can
regard it just as a set. We thus obtain a ser-valued bifunctor which —
for convenience — we shall still call Ext ,(—, —).

Theorem 2.4. There is a natural equivalence of set-valued bifunctors
n: E(A, B)=Ext,(A, B).

Proof. We first define an isomorphism of sets
n: E(4, B> Exty(4, B),

natural in B, where R-£P-£» A4 is a fixed projective presentation of A.
We will then show that i is natural in A.

Given an element in E(A, B), represented by the extension B~ E-¥» A,
we form the diagram

RSPt 54

N
B—Es>E— %A

The homomorphism p:R— B defines an element [y]e Ext5(4, B)
= coker (u* : Hom (P, B)—Hom,(R, B)). We claim that this element
does not depend on the particular ¢ : P— E chosen. Thus let ¢,: P—E,
i=1,2,be two maps inducing y,: R—B, i=1,2. Then ¢, — ¢, factors
through r: P—B, ie, ¢, — ¢, =« It follows that v, —, = tu, whence
[y ] =Ly, +u]l=[y.].

Since two representatives of the same element in E(A, B) obviously
induce the same element in Ext’, (4, B), we have defined a map 1 : E(A, B)
— Extf (A4, B). We leave it to the reader to prove the naturality of y with
respect to B,

Conversely, given an element in Ext’,(A, B), we represent this element
by a homomorphism  : R— B. Taking the push-out of (i, u) we obtain
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the diagram R—t>P—2»A4

b

Boslion st A

By the dual of Lemma 1.2 the bottom row B> E-» A4 is an extension.
We claim that the equivalence class of this extension is independent of
the particular representative y: R— B chosen. Indeed another repre-
sentative y’: R— B has the form y" =y + T where 7: P— B. The reader
may check that the diagram

by

with ¢’ = ¢ + k7 is commutative. By the dual of Lemma 1.3 the left hand
square is a push-out diagram, whence it follows that the extension we
arrive at does not depend on the representative. We thus have defined
a map

¢ Ext%(A4, B)—E(A, B)

which is easily seen to be natural in B.
Using Lemma 1.3 it is easily proved that ., £ are inverse to each other.
We thus have an equivalence

n: E(A, B)=Ext%(A, B)

which is natural in B.

Note that # might conceivably depend upon the projective presenta-
tion of A. However we show that this cannot be the case by the following
(3-dimensional) diagram, which shows also the naturality of # in A4.

RN
T

B » A

NV

E* is the pull-back of E— A4 and A"— A. We have to show the existence
of homomorphisms ¢ : P'—E*, y: R'— B such that all faces are com-
mutative. Since the maps P'>E— A4 and P'— A’'— A agree they define
a homomorphism ¢:P'—E% into the pull-back. Then ¢ induces
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y : R"— B, and trivially all faces are commutative. (To see that R"—>R— B
coincides with 1, compose each with B~ E.) We therefore arrive at a
commutative diagram

E(A,B)—E(A, B)
né nl (e

Ext (A, B)—=—Ext"(4’, B)

For A'= A, o =1, this shows that # is independent of the chosen pro-
jective presentation. In general it shows that # and £ are natural in A. []

Corollary 2.5. The set E(A. B) of equivalence classes of extensions has
a natural abelian group structure.

Proof. This is obvious, since Ext, (A4, B) carries a natural abelian
group structure and since n:E(—, —)>Ext,(—, —) is a natural
equivalence. []

We leave as exercises (see Exercises 2.5 to 2.7) the direct description
of the group structure in E(A. B). However we shall exhibit here the
neutral element of this group. Consider the diagram

R—-£-5P—»A4

Fob

B—XSE—»A

The extension B~—E-—»A represents the neutral element in E(A. B)
if and only if ¢ : R— B is the restriction of a homomorphism 7: P— B,
ie., if =1 The map (¢ —k1t)u: R— E therefore is the zero map. so
that ¢ — k7 factors through A, defininga mapo: A—E withg — k1 =g0e.
Since v(¢ — k) = ¢, o is a right inverse to v. Thus the extension B>— E—» A
splits. Conversely if B~ E-» A4 splits, the left inverse of x is a map E— B
which if composed with ¢ : P—E yields .

We finally note

Proposition 2.6. If P is projective and I injective, then Ext (P, B)=0
=Ext (A4, I) for all A-modules A, B.

Proof. By Theorem 2.4 Ext (P, B) is in one-to-one correspondence
with the set E(P, B), consisting of classes of extensions of the form
B~ E—»P. By Lemma 1.4.5 short exact sequences of this form split.
Hence E(P, B) contains only one element, the zero element. For the other
assertion one proceeds dually. [J

Of course, we could prove this proposition directly, without involving
Theorem 2.4.
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Exercises:

2.1. Prove that Ext,(—, —) is a bifunctor.

2.2. Suppose A is a right I'-left A-bimodule. Show that Ext (A, B) has a left-I-
module structure which is natural in B.

2.3. Suppose B is a right I'-left A-bimodule. Show that Ext,(A, B) has a right
I'-module structure, which is natural in A.

2.4. Suppose A commutative. Show that Ext,(4, B) has a natural (in 4 and B)
A-module structure.

2.5. Show that one can define an addition in E(A4, B) as follows: Let B-——E;—» 4,
B—E,— A be representatives of two elements &,;, &, in E(A, B). Let
Ag: B— B@® B be the map defined by Agz(b)=(b,b),be B,andletV,: A@A— A4
be the map defined by V,(a,, a,) =a, + a,, a,, a, € A. Define the sum &, + &, by

fl + &, = E(Ag, )] (B@BHEL@EZ—»A@A).

2.6. Show that if a,, o, : A"— A, then

&

(oty +o,)*=0af +0od: E(4, B)—E(A, B),

using the addition given in Exercise 2.5. Deduce that E(A. B) admits additive
inverses (without using Theorem 2.4).

2.7. Show that the addition defined in Exercise 2.5 is commutative and associative
(without using Theorem 2.4). [Thus E(A, B) is an abelian group.]

2.8. Let Z,~—Z,,—1Z, be the evident exact sequence. Construct its inverse in
E(Z,,Z,).

2.9. Show the group table of E(Zg,Z,,)-

3. Ext Using Injectives

Given two A-modules A4, B, we defined in Section 2 a group Ext (A, B)
by using a projective presentation R-P-£» 4 of A:

Ext 4(A, B)=coker(u* : Hom 4(P, B)—Hom (R, B)).

Here we consider the dual procedure: Choose an injective presentation
of B, i.e. an exact sequence B~ [-1» S with [ injective, and define the group
Ext}(4, B) as the cokernel of the map #, : Hom (4, I)— Hom 4(A4, S).
Dualizing the proofs of Lemma 2.1, Corollary 2.2, and Theorem 2.3 one
could show that Ext} (4, B) does not depend upon the chosen injective
presentation, and that Ext,(—, —) can be made into a bifunctor, co-
variant in the second, contravariant in the first variable. Also, by
dualizing the proof of Theorem 24 one proves that there is a natural

equivalence of set-valued bifunctors between E(—, —) and Ext ,(—, —).
Here we want to give a different proof of the facts mentioned above
which has the advantage of yielding yet another description of E(—, —).

In contrast to Ext,(—, —) and Ext,(—, —), the new description will
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be symmetric in A and B. Also, this proof establishes immediately that
Ext4(A, B) and Ext (A4, B) are isomorphic as abelian groups. First let
us state the following lemma, due to J. Lambek (see [32]).

Lemma 3.1. Let

Ar ay A az Au

v 5 e 22 |6 (3.1)
B P B b2 B’
be a commutative diagram with exact rows. Then ¢ induces an isomorphism
& :kerfo,/(kera, + ker p)>(impnimf,)/impa, .

Proof. First we show that ¢ induces 2 homomorphism of this kind.
Let x e kerfla,; plainly ¢ x eime. Since 0=0u,x=f,0x, pxeimfp,.
If x e kera,, then x eima,, and px e im@o,. If xe kerg, ¢ x =0. Thus @
is well-defined. Clearly @ is a homomorphism. To show it is epimorphic,
let yeimg mimf3,. There exists x € A with px =y. Since

Ooyx=Pr0x=p,y=0,

x € kerfa,. Finally we show that ¢ is monomorphic. Suppose x € ker fa,,
such that ¢ x e im@o,, ie. ox=¢o, z for some ze A. Then x =u,z +1,
where t € kerg. It follows that x € kera, +kerp. []

To facilitate the notation we introduce some terminology.

Definition. Let Z be a commutative square of A-modules
A—2>A4
P
B—£.B
We then write
ImZ =imgnimfimea,
KerX =kerpo/kera + kery .
With this notation Lemma 3.1 may be stated in the following form:

If the diagram (3.1) has exact rows, then ¢ induces an isomorphism
@:KerX,>SImX,.

Proposition 3.2. For any projective presentation R~ P-» A of A and
any injective presentation B~ 1-1»S of B, there is an isomorphism

o : Ext’ (A, B)=Ext}(4, B).
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Proof. Consider the following commutative diagram with exact rows
and columns

Hom (A, B)—Hom (A, ) Hom 4(A4, §)— Ext, (4. B)

N

Hom,(P, B)Hom ,(P, I)=Hom (P, §) ——0
24 13 (3.2)
Hom ,(R. B)>—Hom (R, I)~»Hom (R, §)

Zs
Ext}, (4, B)——0

The reader easily checks that Ker X, = Ext’(4, B)and Ker X5 = Ext,(4, B).
Applying Lemma 3.1 repeatedly we obtain

Ext(4, B)=KerZ,=Im%,~KerZ,=ImZX,~KerX, = Ext;(4, B). []

Thus for any injective presentation of B, Ext};(A4, B) is isomorphic to
Ext% (A4, B). We thus are allowed to drop the superscript v and to write
Ext (4, B). Let #: B— B’ be a homomorphism and let B'~*51'—» S’ be
an injective presentation. It is easily seen that if t : I — I’ is a map inducing
fi the diagram (3.2) is mapped into the corresponding diagram for
B 1'—»§'. Therefore we obtain an induced homomorphism

By EXt(A4, B)—Ext,(4, B)

which agrees via the isomorphism defined above with the induced
homomorphism f, : Ext,(A, B)—Ext (A4, B).

Analogously one defines an induced homomorphism in the first
variable. With these definitions of induced maps Ext,(—, —) becomes
a bifunctor, and ¢ becomes a natural equivalence. We thus have

Corollary 3.3. Ext,(—, —) is a bifunctor, contravariant in the first,
covariant in the second variable. It is naturally equivalent to Ext(—, —)
and therefore to E(—, —). []

We sometimes express the natural equivalence between Ext (—, —)
and Ext,(—, —) by saying that Ext is balanced.

Finally the above proof also yields a symmetric description of Ext
from (3.2), namely:

Corollary 3.4. Ext, (4, By=KerZ,. []

In view of the above results we shall use only one notation, namely
Ext(—, —)for the equivalent functors E(—, —), Ext ,(—, —), Ext 4(—, —).
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Exercises:

3.1. Show that, if A is a principal ideal domain (p.i.d.). then an epimorphism
f: B— B’ induces an epimorphism f, : Ext,(A, B)—Ext,(A4, B). State and
prove the dual.

3.2. Prove that Ext,(A,Z)=+0 if A has elements of finite order.

3.3. Compute Exty,(Z,,, Z), using an injective presentation of Z.

3.4. Show that Extgz(A, Extz(B, C)) = Extz(B, Extz(A4, C)) when A, B, C are finitely-
generated abelian groups.

3.5. Let the natural equivalences 1 : E(—, —)—Ext,(—, —) be defined by Theo-
rem 2.4, ¢: Ext,(—. —)—Ext4(—. —) by Proposition 3.2. and

i iB(— —)—~Exly(~; —)

by dualizing the proof of Theorem 2.4. Show that ¢ n=17.

4. Computation of some Ext-Groups

We start with the following
Lemma 4.1. (i) ExtA((—D A,-,B) ~ || Ext,(A;, B),
\ @ i

(i) Ext, (4, I B)| = [ Exts(4,B).
J J

Proof. We only prove assertion (i), leaving the other to the reader.
For each i in the index set we choose a projective presentation
R;>P,—» A, of A;. Then @ R,— @ P—» @ A; is a projective presenta-

tion of @ A;. Using Proposmon 134 we obtain the following com-

mutative dlagram with exact rows

Hom,, (@ Aj.B)HHomA(Q—) P B",—rHom,,(@ R,.,B)wExtA(@ A,.‘B)

Lo T

[] Hom,(A;, B)— [ | Hom,(P,, B)— [ | Hom (R, B)—» [ | Ext,(A,, B)

whence the result. []

The reader may prefer to prove assertion (i) by using an injective
presentation of B. Indeed in doing so it becomes clear that the two
assertions of Lemma 4.1 are dual to each other.

In the remainder of this section we shall compute Ext, (A4, B) for 4, B
finitely-generated abelian groups. In view of Lemma 4.1 it is enough to
consider the case where 4, B are cyclic.
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To facilitate the notation we shall write Ext(A4, B) (for Ext;(A4, B))
and Hom (4, B) (for Hom, (4, B)), whenever the groundring is the ring
of integers.

Since Z is projective, one has

Ext(Z,Z)=0=Ext(Z,Z,))

by Proposition 2.6. To compute Ext(Z,,Z) and Ext(Z,,Z,) we use the
projective presentation
LT —»T,

where p is multiplication by r. We obtain the exact sequence

Hom(Z,.Z)— Hom (Z.Z)—— Hom (Z.Z)—» Ext(Z,. Z)

S S

0 » 4 ut >4

Since p* is again multiplication by r we obtain
Ext(Z,,Z)~Z, .
Also the exact sequence
Hom(Z,,Z,)— Hom(Z,Z,)—*~Hom(Z,Z,)—»Ext(Z,,Z,)
| | |

- z e 7

+q) q

q

yields, since p* is multiplication by r,

Ext(Z,,Z)=Z

(r,q)

where (r, g) denotes the greatest common divisor of r and g.

Exercises:

4.1. Show that there are p non-equivalent extensions Z — E—»Z, for p a prime,
but only two non-isomorphic groups E, namely Z ,@Z, and Z .. How does
this come about?

4.2. Classify the extension classes [E], given by

Z,—E—T,

under automorphisms of Z,, and Z,.

4.3. Show that if A4 is a finitely-generated abelian group such that Ext(A4,Z)=0,
Hom(A.Z)=0, then A=0.

4.4. Show that Ext(A4,Z)= A if 4 is a finite abelian group.

4.5. Show that there is a natural equivalence of functors Hom(—, Q/Z) =~ Ext(—,Z)
if both functors are restricted to the category of torsion abelian groups.

4.6. Show that extensions of finite abelian groups of relatively prime order split.



