Schemes and Patching

Write suitable Quasi-affine schemes U_{i} and $V_{i, j}$ and morphisms $V_{i, j} \rightarrow U_{i}$ and $V_{i, j} \rightarrow U_{j}$ that describe the quasi-projective scheme $X=P\left(x_{0}, x_{1}, x_{2} ; ; x_{0} x_{2}, x_{1}\right)$.
The quasi-affine schemes should be given in the form $Q\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q} ; g_{1}, \ldots, g_{r}\right)$ by specifying the variables and the polynomials f_{i} 's and g_{j} 's in those variables.

The morphisms should be given in the form $x_{1} \mapsto h_{1} ; \ldots ; x_{p} \mapsto h_{p}$ by specifying the polynomials h_{1}, \ldots, h_{p}.

Solution

Note that the scheme is the "union" of the quasi-projective schemes $X_{1}=$ $P\left(x_{0}, x_{1}, x_{2} ; ; x_{1}\right)$ and $X_{2}=P\left(x_{0}, x_{1}, x_{2} ; ; x_{0} x_{2}\right)$.

Now $X_{1}=P\left(x_{0}, x_{1}, x_{2} ; ; x_{1}\right)=Q\left(y_{0}, y_{2} ; ;\right)=U_{1}$ is just affine 2 -space \mathbb{A}^{2}. Here we think of $y_{0}=x_{0} / x_{1}$ and $y_{2}=x_{2} / x_{1}$.
Similarly $X_{2}=P\left(x_{0}, x_{1}, x_{2} ; x_{0} x_{2}\right)=Q\left(z_{0}, z_{1} ; ; z_{0}\right)$ is naturally isomorphic to the affine scheme $A\left(z_{0}, z_{1}, u ; u z_{0}-1\right)=U_{2}$. Here we think of $z_{0}=x_{0} / x_{2}$, $z_{1}=x_{1} / x_{2}$ and $u=x_{2} / x_{0}$.

Moreover, the intersection

$$
X_{1} \cap X_{2}=P\left(x_{0}, x_{1}, x_{2} ; ; x_{0} x_{1} x_{2}\right)=Q\left(w_{0}, w_{1} ; ; w_{0} w_{1}\right)=V_{1,2}
$$

is also the affine scheme $A\left(w_{0}, w_{1}, v ; v w_{0} w_{1}-1\right)$. Here we think of $w_{0}=x_{0} / x_{2}$, $w_{1}=x_{1} / x_{2}$ and $v=x_{2}^{2} /\left(x_{0} x_{1}\right)$.

We see that $V_{1,2}$ sits inside U_{2} by

$$
\left(w_{0}, w_{1}, v\right) \mapsto\left(w_{0}, w_{1}, v w_{1}\right)=\left(z_{0}, z_{1}, u\right)
$$

Similarly, $V_{1,2}$ sits inside U_{1} by

$$
\left(w_{0}, w_{1}, v\right) \mapsto\left(w_{0}^{2} v, w_{0} v\right)=\left(y_{0}, y_{2}\right)
$$

One can also follow the "default" approach as given for a general quasi-projective scheme. However, that leads to many U_{i} 's! So this geometric approach is simpler.

