Schemes and Patching

Suppose that X is the scheme obtained by patching

- $U_1 = A(x, y, u; u(y x^2) 1)$ and $U_2 = A(x, y, v; v(y + x^2) 1)$ along $U_3 = A(x, y, w; w(y^2 x^4) 1)$

which is an affine open subscheme in both of them in a natural way.

For the ring $R = \mathbb{Z}$, give an example

- a and b non-units in R
- P = (c, d, e) in $U_1(R_a)$
- Q = (f, g, h) in $U_2(R_b)$

So that these two points P and Q correspond to the same point in $U_3(R_{ab})$ and thus give a point in X(R) which is not the image of a point in $U_1(R)$ or $U_2(R)$.

Solution

In U_1 , we need $y - x^2$ to be a unit and in U_2 we need $y + x^2$ to be a unit on the overlap $y^2 - x^4$ is a unit. Thus, X is the open subscheme of $\mathbb{A}^2 = A(x, y;)$ which is the "complement" of $A(x, y; y - x^2, y + x^2)$.

A point of $X(\mathbb{Z})$ is a pair of integers (p,q) such that $q-p^2$ and $q+p^2$ generate the unit ideal. Since we do not want this to be in the image of $U_1(\mathbb{Z})$ or $U_2(\mathbb{Z})$, neither of $q \pm p^2$ should be a unit in \mathbb{Z} .

We can take (p,q) = (2,1) since $1 + 2^2 = 5$ and $1 - 2^2 = -3$; neither of these is a unit and they are co-prime.

We want (2, 1) to be in $U_1(\mathbb{Z}_a)$. So we need $1-2^2$ to be invertible when we invert a. Thus, a is a multiple of 3.

We want (2,1) to be in $U_2(\mathbb{Z}_b)$. So we need $1+2^2$ to be invertible when we invert b. Thus, b is a multiple of 5.

We can take a = 3 and b = 5.

Now, the point (c, d, e) = (2, 1, -1/3) is a point in $U_1(\mathbb{Z}_3)$ and (f, g, h) =(2, 1, 1/5) is a point in $U_2(\mathbb{Z}_5)$.