Locally Ringed Spaces MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

18th November 2021

Kapil Hari Paranjape (IISER Mohali)

Locally Ringed Spaces

Given a scheme X, we produced a category \mathcal{T}_X and a topological space $\sigma(X)$.

The category \mathcal{T}_X is the same as the category of open sets in the topological space $\sigma(X)$. ("Same" means it is isomorphic in a natural way.)

An object F of **Sheaf** gives a sheaf on the category \mathcal{T}_X . Hence, we get a sheaf \tilde{F} on $\sigma(X)$.

In particular, we have the sheaf $\mathcal{O}_X = \mathbb{A}^1$ which is a sheaf of rings.

For a ring R we have a scheme Sp(R) and a topological space Spec(R) so that $\sigma(Sp(R)) = Spec(R)$.

Moreover, there is a basis for this topology made of open sets of the form $Spec(R_u)$ as u varies over elements of R.

For every such open set we have a natural isomorphism $R_u \cong \mathcal{O}(\text{Spec}(R_u))$.

A point \mathfrak{p} of $\operatorname{Spec}(R)$ is associated with a prime ideal of R and open sets of the above form containing it are associated with u such that $u \notin \mathfrak{p}$.

Recall that the *stalk* of a sheaf \mathcal{F} on \mathcal{T}_X at a point \mathfrak{p} is defined as the direct limit of $\mathcal{F}(U)$ as U runs over open sets containing \mathfrak{p} .

Hence, we see that the stalk of the sheaf \mathcal{O} at a point \mathfrak{p} of $\operatorname{Spec}(R)$ is the local ring $R_{\mathfrak{p}}$.

Kapil Hari Paranjape (IISER Mohali)

Given a scheme X we have a natural morphism $X \to \text{Sp}(\mathcal{O}(X))$ and the scheme X is affine if and only if this is an isomorphism.

Given a scheme X and a point \mathfrak{p} of $\sigma(X)$, there is an open subscheme U of X which is affine and \mathfrak{p} is a point of $\sigma(U)$.

It follows that the stalk of \mathcal{O} at \mathfrak{p} is a local ring.

In fact, if $R = \mathcal{O}(U)$, then \mathfrak{p} is associated with a prime ideal in R and the stalk of \mathcal{O} at \mathfrak{p} is $R_{\mathfrak{p}}$.

We use the notation $\mathcal{O}_{X,\mathfrak{p}}$ to denote this stalk.

Push forward sheaf

Given a continuous map $f: X \to Y$ of topological spaces, we get a natural functor f^{-1} from \mathcal{T}_Y to \mathcal{T}_X which sends an open set U in Y to the open set $f^{-1}(U)$.

Given a contravariant functor F from \mathcal{T}_X to **Set** we can compose with the above functor to get a contravariant functor $f_*(F)$ from \mathcal{T}_Y to **Set**.

One checks that if *F* is a sheaf, then so is $f_*(F)$. (*Hint*: the inverse image of an open cover of *U* is an open cover of $f^{-1}(U)$.)

Space of a sheaf

Given a sheaf F on \mathcal{T}_X , let $\sigma(F)$ denote the disjoint union $\sqcup_{x \in X} F_x$ of the stalks of F with the topology as given below.

Given an open set U of X, an element $s \in F(U)$ and a point x of U, we get a natural element s_x in the stalk F_x .

We define the basic open set B(s, U) to consist of the subset $\{s_x : x \in U\}$ of $\sigma(F)$.

This gives a topological space $\sigma(F)$ with a natural map $\sigma(F) \to X$ (which sends s_x to x). Moreover, this map is a local homeomorphism.

Conversely, one can show that a local homeomorphism $Y \to X$ gives us a sheaf \tilde{Y} on \mathcal{T}_X called the sheaf of sections of $Y \to X$.

Kapil Hari Paranjape (IISER Mohali)

Pull-back sheaf

If $f : X \to Y$ is a continuous map and $S \to Y$ is a local homeomorphism, then one checks that $S \times_Y X \to X$ is *also* a local homeomorphism.

Starting with a sheaf F on Y, we get a local homeomorphism $\sigma(F) \to Y$ and then a local homeomorphism $\sigma(F) \times_Y X \to X$.

Note that, as a set, $\sigma(F) \times_Y X = \sqcup_{x \in X} F_{f(x)}$.

This is associated with the sheaf $\sigma(F) \times_Y X$ on \mathcal{T}_X .

This sheaf on \mathcal{T}_X is denoted as $f^{-1}(F)$ and called the pull-back sheaf.

One easily checks that the stalk of $f^{-1}(F)$ at x is the same as the stalk $F_{f(x)}$.

Kapil Hari Paranjape (IISER Mohali)

Adjunction for sheaves

Given a continuous map $f : X \to Y$, a sheaf F on X and a sheaf G on Y, there is a natural isomorphism

 $Mor(f^{-1}G,F) = Mor(G,f_*(F))$

Here, the left-hand-side has morphisms of functors on T_X and the right-hand-side has morphisms of functors on T_Y .

In fact, this property can be used to *define* f^{-1} given f_* and vice versa.

Morphisms of Schemes

Recall the σ is a functor from **Scheme** to **Top**.

In other words, given a morphism $f : X \to Y$ of schemes, the resulting map $\sigma(f) : \sigma(X) \to \sigma(Y)$ is continuous.

As seen earlier, "locally" each scheme is made up of affine schemes.

Similarly, each such morphism is "locally" associated with a morphism of affine schemes.

- Given \mathfrak{p} in $\sigma(X)$ and $\mathfrak{q} = f(\mathfrak{p})$.
- There is an affine open subscheme $V \to Y$ such that q lies in $\sigma(V)$.
- There is an affine open subscheme $U \to X$ such that \mathfrak{p} lies in $\sigma(U)$.
- *f* restricts to a morphism $U \to V$ given by a ring homomorphism $\mathcal{O}(V) \to \mathcal{O}(U)$.

It follows that we have a ring homomorphism $\mathcal{O}_{Y,\mathfrak{q}} \to \mathcal{O}_{X,\mathfrak{p}}$.

Moreover, this is a *local ring homomorphism* in the sense that the inverse image of the maximal ideal in $\mathcal{O}_{X,p}$ is the maximal ideal in $\mathcal{O}_{Y,q}$.

This follows since f(p) = q.

These ring homomorphisms can be put together to give a morphism $f^{-1}(\mathcal{O}_Y) \to \mathcal{O}_X$ of sheaves on X.

This morphism is made up of *ring homomorphisms*. (Note that both of these as sheaves of rings.)

Locally Ring Spaces

A locally ringed space is a topological X with a sheaf of rings \mathcal{O}_X on it such that the stalk $\mathcal{O}_{X,p}$ at each point p of X is a local ring.

A morphism of locally ring spaces is a continuous map $f : X \to Y$ and a homomorphism $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ of sheaves of rings such that at stalk level $\mathcal{O}_{Y,f(\mathfrak{p})} \to \mathcal{O}_{X,\mathfrak{p}}$ is a local ring homomorphism.

We denote by LRSpace the category of locally ringed spaces.

We have produced a functor **Scheme** to **LRSpace**. Let us denote this as Σ .

Note that $Mor(X, Y) = Mor(\Sigma(X), \Sigma(Y))$ for schemes X and Y since this is easily checked for affine schemes and then "patched".

Thus, we can think of **Scheme** as a subcategory of **LRSpace**.

Kapil Hari Paranjape (IISER Mohali)

Locally Ringed Spaces